000 02784nam a22002537a 4500
003 ZW-GwMSU
005 20241216101304.0
008 241216b |||||||| |||| 00| 0 eng d
022 _a0176-1617
040 _aMSU
_bEnglish
_cMSU
_erda
050 0 0 _aQK711.2 JOU
100 1 _aKalcsits, Lee A.
_eauthor
245 1 0 _aGenotypic variation in nitrogen isotope discrimination in Populus balsamifera L. clones grown with either nitrate or ammonium
_ccreated by Lee A. Kalcsits and Robert D. Guy
264 1 _aAmsterdam:
_bElsevier GmbH,
_c2016.
336 _2rdacontent
_atext
_btxt
337 _2rdamedia
_aunmediated
_bn
338 _2rdacarrier
_avolume
_bnc
440 _aJournal of plant physiology
_vVolume 201
520 3 _aIntraspecific variability in nitrogen use has not been comprehensively assessed in a natural poplar species. Here, a nitrogen isotope mass balance approach was used to assess variability in nitrogen uptake, assimilation and allocation traits in 25 genotypes from five climatically dispersed provenances of Populus balsamifera L. grown hydroponically with either nitrate or ammonium. Balsam poplar was able to grow well with either ammonium or nitrate as the sole nitrogen source. Variation within provenances exceeded significant provenance level variation. Interestingly, genotypes with rapid growth on nitrate achieved similar growth with ammonium. In most cases, the root:shoot ratio was greater in plants grown with ammonium. However, there were genotypes where root:shoot ratio was lower for some genotypes grown with ammonium compared to nitrate. Tissue nitrogen concentration was greater in the leaves and stems but not the roots for plants grown with ammonium compared to nitrate. There was extensive genotypic variation in organ-level nitrogen isotope composition. Root nitrogen isotope discrimination was greater under nitrate than ammonium, but leaf nitrogen isotope discrimination was not significantly different between plants on different sources. This can indicate variation in partitioning of nitrogen assimilation, efflux/influx (E/I) and root or leaf assimilation rates. The proportion of nitrogen assimilated in roots was lower under nitrate than ammonium. E/I was lower for nitrate than ammonium. With the exception of E/I, genotype-level variations in nitrogen-use traits for nitrate were correlated with the same traits when grown with ammonium. Using the nitrogen isotope mass balance model, a high degree of genotypic variation in nitrogen use traits was identified at both the provenance and, more extensively, the genotypic level.
650 _aIntraspecific variation
_vNitrogen assimilation
_xNitrogen fluxes
700 1 _aGuy, Robert D.
_eco-author
856 _uhttps://doi.org/10.1016/j.jplph.2016.06.016
942 _2lcc
_cJA
999 _c168897
_d168897