000 03220nam a22002657a 4500
003 ZW-GwMSU
005 20241206085147.0
008 241206b |||||||| |||| 00| 0 eng d
022 _a00218596
040 _aMSU
_bEnglish
_cMSU
_erda
050 0 0 _aS3 JOU
100 1 _aTaye, M.
_eauthor
245 1 0 _aEffects of shoot tipping on development and yield of the tuber crop Plectranthus edulis/
_ccreated by M. Taye, W.J.M. Lommen, P.C. Struik
264 1 _aCambridge :
_bCambridge University Press,
_c2012.
336 _2rdacontent
_atext
_btxt
337 _2rdamedia
_aunmediated
_bn
338 _2rdacarrier
_avolume
_bnc
440 _aJournal of agricultural science
_vVolume 150, number 4,
520 3 _aPlectranthus edulis (Vatke) Agnew is one of the tuber crops of the genus Plectranthus that is widely cultivated in Africa and Asia. P. edulis produces below-ground tubers on stolons originating from the stems, comparable to the potato (Solanum tuberosum L.). Farmers apply several laborious cultural practices to enhance shoot growth and yield, among which shoot tipping is very common. Tipping (pinching) is the removal of the shoot apex with one or two pairs of leaves from the main stems and branches. The rationale of this practice, especially when repeated more than once during one cropping season, is not fully understood. One similar experiment with two cultivars was carried out at two locations (Awassa and Wondogenet) in Ethiopia to assess and analyse the effects of shoot tipping and its frequency on crop development and tuber production. Tipping treatments included zero tipping, tipping once, tipping twice and tipping thrice, with the first tipping taking place 68 days after planting (DAP), a stage at which most of the stems reached a height of about 0·15 m, and the remainder following at intervals of 44–46 days. Tipping stimulated stem branching; it significantly increased the number of primary, secondary and tertiary stems in both experiments. Soil cover increased with an increase in the frequency of the tipping in Awassa, because of the tipping effects on the different canopy development variables. Tipping also enhanced the soil cover in Wondogenet, but the crop did not gain any extra benefit from a third tipping. Tipping enhanced early stolon formation, but did not consistently affect the number of stolons per hole later in the growing season. The number of tubers increased with an increase in the frequency of tipping in both cultivars in Wondogenet and in one cultivar in Awassa. Tuber dry matter yield increased with an increase in the frequency of tipping at both sites. Fresh tuber yield in the final harvest at 208 DAP was c. 1·9 kg/m2. Tipping on average increased fresh tuber yield by 17% in Wondogenet, whereas the difference was not detectable in Awassa. Because senescence was delayed slightly by tipping, yield effects of tipping might be larger when harvesting later. In general, there was a positive effect of tipping on canopy development and tuber yield.
650 _aPotato crops
_vGrowth
_xNumber
700 1 _aLommen, W.J.M.
_eco author
700 1 _aStruik, P.C.
_eco author
856 _uhttps://doi.org/10.1017/S002185961100075X
942 _2lcc
_cJA
999 _c168633
_d168633