000 01922nam a22002897a 4500
003 ZW-GwMSU
005 20240325100936.0
008 240325b |||||||| |||| 00| 0 eng d
022 _a02664666
040 _aMSU
_bEnglish
_cMSU
_erda
050 0 0 _aHB139.T52 ECO
100 1 _aDeo, Rohit
_eauthor
245 1 0 _aConditions for the propagation of memory parameter from durations to counts and realized volatility
_ccreated by Rohit Deo , Clifford M. Hurvich , Philippe Soulier and Yi Wang
264 1 _aCambridge:
_bCambridge University Press,
_c2009.
336 _2rdacontent
_atext
_btxt
337 _2rdamedia
_aunmediated
_bn
338 _2rdacarrier
_avolume
_bnc
440 _aEconometric theory
_vVolume 25, number 3,
520 3 _aWe establish sufficient conditions on durations that are stationary with finite variance and memory parameter to ensure that the corresponding counting process N(t) satisfies Var N(t) ~ Ct2d+1 (C > 0) as t → ∞, with the same memory parameter that was assumed for the durations. Thus, these conditions ensure that the memory parameter in durations propagates to the same memory parameter in the counts. We then show that any autoregressive conditional duration ACD(1,1) model with a sufficient number of finite moments yields short memory in counts, whereas any long memory stochastic duration model with d > 0 and all finite moments yields long memory in counts, with the same d. Finally, we provide some results about the propagation of long memory to the empirically relevant case of realized variance estimates affected by market microstructure noise contamination.
650 _aTime series analysis
_vEstimation theory
_xVolatility
650 _aDuration analysis
700 1 _aHurvich, Clifford M.
_eco author
700 1 _aSoulier, Philippe
_eco author
700 1 _aWang, Yi
_eco author
856 _uhttps://doi.org/10.1017/S0266466608090294
942 _2lcc
_cJA
999 _c164531
_d164531