000 | 01922nam a22002897a 4500 | ||
---|---|---|---|
003 | ZW-GwMSU | ||
005 | 20240325100936.0 | ||
008 | 240325b |||||||| |||| 00| 0 eng d | ||
022 | _a02664666 | ||
040 |
_aMSU _bEnglish _cMSU _erda |
||
050 | 0 | 0 | _aHB139.T52 ECO |
100 | 1 |
_aDeo, Rohit _eauthor |
|
245 | 1 | 0 |
_aConditions for the propagation of memory parameter from durations to counts and realized volatility _ccreated by Rohit Deo , Clifford M. Hurvich , Philippe Soulier and Yi Wang |
264 | 1 |
_aCambridge: _bCambridge University Press, _c2009. |
|
336 |
_2rdacontent _atext _btxt |
||
337 |
_2rdamedia _aunmediated _bn |
||
338 |
_2rdacarrier _avolume _bnc |
||
440 |
_aEconometric theory _vVolume 25, number 3, |
||
520 | 3 | _aWe establish sufficient conditions on durations that are stationary with finite variance and memory parameter to ensure that the corresponding counting process N(t) satisfies Var N(t) ~ Ct2d+1 (C > 0) as t → ∞, with the same memory parameter that was assumed for the durations. Thus, these conditions ensure that the memory parameter in durations propagates to the same memory parameter in the counts. We then show that any autoregressive conditional duration ACD(1,1) model with a sufficient number of finite moments yields short memory in counts, whereas any long memory stochastic duration model with d > 0 and all finite moments yields long memory in counts, with the same d. Finally, we provide some results about the propagation of long memory to the empirically relevant case of realized variance estimates affected by market microstructure noise contamination. | |
650 |
_aTime series analysis _vEstimation theory _xVolatility |
||
650 | _aDuration analysis | ||
700 | 1 |
_aHurvich, Clifford M. _eco author |
|
700 | 1 |
_aSoulier, Philippe _eco author |
|
700 | 1 |
_aWang, Yi _eco author |
|
856 | _uhttps://doi.org/10.1017/S0266466608090294 | ||
942 |
_2lcc _cJA |
||
999 |
_c164531 _d164531 |