000 01531nam a22002537a 4500
003 ZW-GwMSU
005 20240322080906.0
008 240322b |||||||| |||| 00| 0 eng d
022 _a02664666
040 _aMSU
_bEnglish
_cMSU
_erda
050 0 0 _aHB139.T52 ECO
100 1 _aOuyang, Desheng
_eauthor
245 1 0 _aNonparametric estimation of regression functions with discrete regressors
_ccreated by Desheng Ouyang, Qi Li and Jeffrey S. Racine
264 1 _aCambridge:
_bCambridge University Press,
_c2009.
336 _2rdacontent
_atext
_btxt
337 _2rdamedia
_aunmediated
_bn
338 _2rdacarrier
_avolume
_bnc
440 _aEconometric theory
_vVolume 25, number 1
520 3 _aWe consider the problem of estimating a nonparametric regression model containing categorical regressors only. We investigate the theoretical properties of least squares cross-validated smoothing parameter selection, establish the rate of convergence (to zero) of the smoothing parameters for relevant regressors, and show that there is a high probability that the smoothing parameters for irrelevant regressors converge to their upper bound values, thereby automatically smoothing out the irrelevant regressors. A small-scale simulation study shows that the proposed cross-validation-based estimator performs well in finite-sample settings.
650 _aRegression analysis
_vNonparametric statistics
_xEstimation theory
700 1 _aLi, Qi
_eco author
856 _uhttps://doi.org/10.1017/S0266466608090014
942 _2lcc
_cJA
999 _c164487
_d164487