000 | 01531nam a22002537a 4500 | ||
---|---|---|---|
003 | ZW-GwMSU | ||
005 | 20240322080906.0 | ||
008 | 240322b |||||||| |||| 00| 0 eng d | ||
022 | _a02664666 | ||
040 |
_aMSU _bEnglish _cMSU _erda |
||
050 | 0 | 0 | _aHB139.T52 ECO |
100 | 1 |
_aOuyang, Desheng _eauthor |
|
245 | 1 | 0 |
_aNonparametric estimation of regression functions with discrete regressors _ccreated by Desheng Ouyang, Qi Li and Jeffrey S. Racine |
264 | 1 |
_aCambridge: _bCambridge University Press, _c2009. |
|
336 |
_2rdacontent _atext _btxt |
||
337 |
_2rdamedia _aunmediated _bn |
||
338 |
_2rdacarrier _avolume _bnc |
||
440 |
_aEconometric theory _vVolume 25, number 1 |
||
520 | 3 | _aWe consider the problem of estimating a nonparametric regression model containing categorical regressors only. We investigate the theoretical properties of least squares cross-validated smoothing parameter selection, establish the rate of convergence (to zero) of the smoothing parameters for relevant regressors, and show that there is a high probability that the smoothing parameters for irrelevant regressors converge to their upper bound values, thereby automatically smoothing out the irrelevant regressors. A small-scale simulation study shows that the proposed cross-validation-based estimator performs well in finite-sample settings. | |
650 |
_aRegression analysis _vNonparametric statistics _xEstimation theory |
||
700 | 1 |
_aLi, Qi _eco author |
|
856 | _uhttps://doi.org/10.1017/S0266466608090014 | ||
942 |
_2lcc _cJA |
||
999 |
_c164487 _d164487 |