000 01388nam a22002777a 4500
003 ZW-GwMSU
005 20240502092907.0
008 230626b |||||||| |||| 00| 0 eng d
022 _a13504851
040 _aMSU
_cMSU
_erda
_bEnglish
050 0 0 _aHB1.A666 APP
100 1 _aBelloc, Filippo
_eauthor
245 1 2 _aA dynamic hurdle model for zeroinflated panel count data
_ccreated by Filippo Belloc , Mauro Bernardi , Antonello Maruotti and Lea Petrella
264 1 _aNew York:
_bTaylor and Francis,
_c2013
336 _2rdacontent
_atext
_btxt
337 _2rdamedia
_aunmediated
_bn
338 _2rdacarrier
_avolume
_bnc
440 _aApplied economics letters
_vVolume 20, number 9
520 3 _aThis article proposes an approximate conditional dynamic finite mixture hurdle model for panel count data with excess of zeros and endogenous initial conditions. We provide parameter estimates by using the Expectation-Maximization (EM) algorithm in a Nonparametric Maximum Likelihood (NPML) framework. An application to a unique data set on traffic violation counts of a subpopulation of Italian drivers is given.
650 _aHurdle model
_vDynamic models
_xFinite mixture
700 1 _aBernardi, Mauro
_eco-author
700 1 _aMaurotti, Antonello
_eco-author
700 1 _aPetrella, Lea
_eco-author
856 _uhttps://doi.org/10.1080/13504851.2012.750447
942 _2lcc
_cJA
999 _c162702
_d162702