000 02592nam a22002537a 4500
003 ZW-GwMSU
005 20230601122334.0
008 230601b |||||||| |||| 00| 0 eng d
040 _aMSU
_cMSU
_erda
100 _aSEBASTIA, M.T
245 _aNutrient and phytoplankton analysis of a mediterranean coastal area
264 _aNew York
_bSpringer
_c2013
336 _2rdacontent
_atext
_btxt
337 _2rdamedia
_aunmediated
_bn
338 _2rdacarrier
_avolume
_bnc
440 _a Environmental Management
_vVolume , number ,
520 _aIdentifying and quantifying the key anthropogenic nutrient input sources are essential to adopting management measures that can target input for maximum effect in controlling the phytoplankton biomass. In this study, three systems characterized by distinctive main nutrient sources were sampled along a Mediterranean coast transect. These sources were groundwater discharge in the Ahuir area, the Serpis river discharge in the Venecia area, and a submarine wastewater outfall 1,900 m from the coast. The study area includes factors considered important in determining a coastal area as a sensitive area: it has significant nutrient sources, tourism is a major source of income in the region, and it includes an area of high water residence time (Venecia area) which is affected by the harbor facilities and by wastewater discharges. We found that in the Ahuir and the submarine wastewater outfall areas, the effects of freshwater inputs were reduced because of a greater water exchange with the oligotrophic Mediterranean waters. On the other hand, in the Venecia area, the highest levels of nutrient concentration and phytoplankton biomass were attributed to the greatest water residence time. In this enclosed area, harmful dinoflagellates were detected (Alexandrium sp. and Dinophysis caudata). If the planned enlargement of the Gandia Harbor proceeds, it may increase the vulnerability of this system and provide the proper conditions of confinement for the dinoflagellate blooms’ development. Management measures should first target phosphorus inputs as this is the most potential-limiting nutrient in the Venecia area and comes from a point source that is easier to control. Finally, we recommend that harbor environmental management plans include regular monitoring of water quality in adjacent waters to identify adverse phytoplankton community changes.
650 _aCHEMTAX
650 _apigments
650 _aphytoplankton
700 _aRODILLA, M
856 _uhttps://doi.org/10.1007/s00267-012-9986-3
942 _2lcc
_cJA
999 _c162486
_d162486