Midlands State University Library
Image from Google Jackets

Zinc deficiency affects physiological and anatomical characteristics in maize leaves created by Edson M. Mattiello, Hugo A. Ruiz, Julio C.L. Neves, Marília C. Ventrella and Wagner L. Araújo

By: Contributor(s): Material type: TextTextSeries: Journal of plant physiology ; Volume 183Amsterdam: Elsevier GmbH, 2015Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISSN:
  • 0176-1617
Subject(s): LOC classification:
  • QK711.2 JOU
Online resources: Abstract: Zinc (Zn) is an essential microelement involved in several plant physiological processes. Therefore, it is important to identify Zn deficiencies promptly—before extensive damage occurs to the plant. The diagnostic tools that are used to identify Zn deficiencies are very important in areas where Zn deficiencies occur. Such diagnostic tools are vital for nutritional management and fertilizer recommendations. The current study investigated the effects of Zn deficiency on maize plants by recording a number of physiological and anatomical parameters. A Zn omission trial (from 0 to 22 days) was carried out to produce plants that had varying degrees of Zn deficiency. Typical symptoms of Zn deficiency (e.g. chlorotic stripes and purple shades on the edges and leaf sheath) appeared 16 days after the omission of Zn from nutrient solutions. As the time of Zn omission increased, there were significant decreases in net photosynthesis, stomatal conductance, maximal efficiency of photosystem I (evaluated by Fv/Fm), biomass (dry weight) and Zn concentrations in plants. Zinc-deficient plants also had a lower vascular bundle proportion coupled with a higher stomata density. These physiological and anatomical changes negatively impacted plant growth. Moreover, they occurred before visible symptoms of Zn deficiency were observed. Zinc concentrations were recorded for younger leaves, rather than for more mature leaves, which is usually recommended for plant analysis. The results demonstrate that the analysis of Zn in young leaves of maize is a very sensitive indicator of Zn status.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Vol info Status Notes Date due Barcode
Journal Article Journal Article Main Library - Special Collections QK711.2 JOU (Browse shelf(Opens below)) Vol.183 (pages138-143) Not for loan For in house use only

Zinc (Zn) is an essential microelement involved in several plant physiological processes. Therefore, it is important to identify Zn deficiencies promptly—before extensive damage occurs to the plant. The diagnostic tools that are used to identify Zn deficiencies are very important in areas where Zn deficiencies occur. Such diagnostic tools are vital for nutritional management and fertilizer recommendations. The current study investigated the effects of Zn deficiency on maize plants by recording a number of physiological and anatomical parameters. A Zn omission trial (from 0 to 22 days) was carried out to produce plants that had varying degrees of Zn deficiency. Typical symptoms of Zn deficiency (e.g. chlorotic stripes and purple shades on the edges and leaf sheath) appeared 16 days after the omission of Zn from nutrient solutions. As the time of Zn omission increased, there were significant decreases in net photosynthesis, stomatal conductance, maximal efficiency of photosystem I (evaluated by Fv/Fm), biomass (dry weight) and Zn concentrations in plants. Zinc-deficient plants also had a lower vascular bundle proportion coupled with a higher stomata density. These physiological and anatomical changes negatively impacted plant growth. Moreover, they occurred before visible symptoms of Zn deficiency were observed. Zinc concentrations were recorded for younger leaves, rather than for more mature leaves, which is usually recommended for plant analysis. The results demonstrate that the analysis of Zn in young leaves of maize is a very sensitive indicator of Zn status.

There are no comments on this title.

to post a comment.