Effect of second ligand on the luminescence of Samarium (III) dibenzoylmethane complexes : syntheses, crystal structures, thermal analysis and luminescence study / created by Muhammad Idiris Saleh, Min Yee Choo, Tai Wei Chan and Mohd R Razali
Material type:
- text
- unmediated
- volume
- 09743626
- QD31 JOU
Item type | Current library | Call number | Vol info | Status | Notes | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|
![]() |
Main Library - Special Collections | QD31 JOU (Browse shelf(Opens below)) | Vol. 127, no.12 (pages 2241-2249) | Not for loan | For in house use only |
The ternary complexes of Sm(III) with dibenzoylmethane (dbm) were synthesized by introducing 1,10-phenanthroline (phen), 4,7-dimethyl-1,10-phenanthroline (dmphen), 3,4,7,8-tetramethyl-1,10-phenanthroline (tmphen), 4,7-diphenyl-1,10-phenanthroline (dpphen), 2,2-bipyridyl (bpy), 4,4’-dimethyl-2,2-bipyridyl (4,4-dmbpy), 5,5’-dimethyl-2,2-bipyridyl (5,5-dmbpy) and 4,4’-di-tert-butyl-2,2-bipyridyl (4,4-dtbbpy) as a second ligand. The complexes were isolated and characterized by elemental analysis (CHN), thermogravimetric analysis (TGA), IR spectroscopy, luminescence spectroscopy and single crystal X-ray diffraction. Structural study shows that in all complexes Sm(III) is in square antiprism geometry. All complexes emit strong luminescence under ultraviolet excitation. The strongest emission is at 643 nm which can be assigned for 4 G 5/2 to 6 H 9/2 transition, equivalent to energy of 15550 cm−1. The addition of the second ligand has increased the emission intensity of the complexes while the transition is maintained.
There are no comments on this title.