Midlands State University Library
Image from Google Jackets

Physiological parameters and protective energy dissipation mechanisms expressed in the leaves of two Vitis vinifera L. genotypes under multiple summer stresses created by Alberto Palliotti, Sergio Tombesi, Tommaso Frioni, Oriana Silvestroni, Vania Lanari, Claudio D’Onofrio, Fabiola Matarese, Andrea Bellincontro and Stefano Poni

By: Contributor(s): Material type: TextTextSeries: Journal of plant physiology ; Volume 185Amsterdam: Elsevier GmbH, 2015Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISSN:
  • 0176-1617
Subject(s): LOC classification:
  • QK711.2 JOU
Online resources: Abstract: Photosynthetic performances and energy dissipation mechanisms were evaluated on the anisohydric cv. Sangiovese and on the isohydric cv. Montepulciano (Vitis vinifera L.) under conditions of multiple summer stresses. Potted vines of both cultivars were maintained at 90% and 40% of maximum water availability from fruit-set to veraison. One week before veraison, at predawn and midday, main gas-exchange and chlorophyll fluorescence parameters, chlorophyll content, xanthophyll pool and cycle and catalase activity were evaluated. Under water deficit and elevated irradiance and temperature, contrary to cv. Montepulciano and despite a significant leaf water potential decrease, Sangiovese’s leaves kept their stomata more open and continued to assimilate CO2 while also showing higher water use efficiency. Under these environmental conditions, in comparison with the isohydric cv. Montepulciano, the protective mechanisms of energy dissipation exerted by the anisohydric cv. Sangiovese were: (i) higher stomatal conductance and thermoregulation linked to higher transpiration rate; (ii) greater ability at dissipating more efficiently the excess energy via the xanthophylls cycle activity (thermal dissipation) due to higher VAZ pool and greater increase of de-epoxidation activity.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Vol info Status Notes Date due Barcode
Journal Article Journal Article Main Library - Special Collections QK711.2 JOU (Browse shelf(Opens below)) Vol. 185(pages84-92) Not for loan For in house use only

Photosynthetic performances and energy dissipation mechanisms were evaluated on the anisohydric cv. Sangiovese and on the isohydric cv. Montepulciano (Vitis vinifera L.) under conditions of multiple summer stresses. Potted vines of both cultivars were maintained at 90% and 40% of maximum water availability from fruit-set to veraison. One week before veraison, at predawn and midday, main gas-exchange and chlorophyll fluorescence parameters, chlorophyll content, xanthophyll pool and cycle and catalase activity were evaluated. Under water deficit and elevated irradiance and temperature, contrary to cv. Montepulciano and despite a significant leaf water potential decrease, Sangiovese’s leaves kept their stomata more open and continued to assimilate CO2 while also showing higher water use efficiency. Under these environmental conditions, in comparison with the isohydric cv. Montepulciano, the protective mechanisms of energy dissipation exerted by the anisohydric cv. Sangiovese were: (i) higher stomatal conductance and thermoregulation linked to higher transpiration rate; (ii) greater ability at dissipating more efficiently the excess energy via the xanthophylls cycle activity (thermal dissipation) due to higher VAZ pool and greater increase of de-epoxidation activity.

There are no comments on this title.

to post a comment.