Midlands State University Library
Image from Google Jackets

Catchments as reactors a comprehensive approach for water fluxes and solute turnover

By: Contributor(s): Material type: TextTextSeries: Environmental earth sciences ; Volume , number ,Varleg Springer 2013Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
Subject(s): Online resources: Summary: Sustainable water quality management requires a profound understanding of water fluxes (precipitation, run-off, recharge, etc.) and solute turnover such as retention, reaction, transformation, etc. at the catchment or landscape scale. The Water and Earth System Science competence cluster (WESS, http://www.wess.info/) aims at a holistic analysis of the water cycle coupled to reactive solute transport, including soil–plant–atmosphere and groundwater–surface water interactions. To facilitate exploring the impact of land-use and climate changes on water cycling and water quality, special emphasis is placed on feedbacks between the atmosphere, the land surface, and the subsurface. A major challenge lies in bridging the scales in monitoring and modeling of surface/subsurface versus atmospheric processes. The field work follows the approach of contrasting catchments, i.e. neighboring watersheds with different land use or similar watersheds with different climate. This paper introduces the featured catchments and explains methodologies of WESS by selected examples.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Vol info Status Notes Date due Barcode
Journal Article Journal Article Main Library - Special Collections GE105 ENV (Browse shelf(Opens below)) Vol.69 , No.2 (May 2013) Not for loan For In House Use Only

Sustainable water quality management requires a profound understanding of water fluxes (precipitation, run-off, recharge, etc.) and solute turnover such as retention, reaction, transformation, etc. at the catchment or landscape scale. The Water and Earth System Science competence cluster (WESS, http://www.wess.info/) aims at a holistic analysis of the water cycle coupled to reactive solute transport, including soil–plant–atmosphere and groundwater–surface water interactions. To facilitate exploring the impact of land-use and climate changes on water cycling and water quality, special emphasis is placed on feedbacks between the atmosphere, the land surface, and the subsurface. A major challenge lies in bridging the scales in monitoring and modeling of surface/subsurface versus atmospheric processes. The field work follows the approach of contrasting catchments, i.e. neighboring watersheds with different land use or similar watersheds with different climate. This paper introduces the featured catchments and explains methodologies of WESS by selected examples.

There are no comments on this title.

to post a comment.