Influence of inactivation agents on phosphorus release from sediment
Material type:
- text
- unmediated
- volume
Item type | Current library | Call number | Vol info | Status | Notes | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|
![]() |
Main Library - Special Collections | GE105 ENV (Browse shelf(Opens below)) | Vol.68 , No.4 (Feb 2013) | Not for loan | For In House Use Only |
The effects of inactivation agents, including common polymeric aluminium (Al) chloride (CPAC) and Ecological Type PAC (UNIC), on phosphorus (P) released from sediment are unclear. To determine these effects, we performed seven experiments using various inactivation agent additions. The experimental schemes used were as follows: (1) CPAC, 15 mg Al L−1; (2) CPAC (15 mg Al L−1) + polyacrylamide (PAM) (0.5 mg L−1); (3) UNIC, 5 mg Al L−1; (4) UNIC, 15 mg Al L−1; (5) UNIC, 60 mg Al L−1; (6) control set without any inactivation agent addition; and (7) alkali shock load (the pH value of overlying water in the scheme 7 was adjusted to 11 by addition of sodium hydroxide to simulate alkali shock load at 13 days after CPAC addition). The experiments were conducted in glass columns, each containing 0.3 L sediment from Lake Dianchi and 3 L of overlying water. The results showed that P release rate decreased as the amount of inactivation agent added increased. P release rate was calculated according to each inactivation agent and the amount of inactivation agent added. Release rate found was in the decreasing order: (6) > (3) > (4) > (1) > (5) > (2). The corresponding rate was calculated to be 7.11, 6.16, 4.55, 1.76, 1.46 and 1.00 mg P m−2 day−1, respectively. Dissolved total P (DTP) was the main form of total P (TP) in the overlying water. After the addition of PAM, the DTP:TP ratio decreased while the dissolved inorganic P (DIP):DTP ratio increased. With increasing the amount of inactivation agents added, both DTP:TP and DIP:TP ratios decreased. Experimental group 3 had similar DTP:TP and DIP:TP ratios to experimental group 6. These results are significant in terms of the large-scale application of inactivation agents for reducing levels of bioreactive P. Alkali shock load (experimental group 7) caused failure in the inactivation of P by CPAC.
There are no comments on this title.