Midlands State University Library
Image from Google Jackets

Transcriptional regulation of vascular cambium activity during the transition from juvenile to mature stages in Cunninghamia lanceolata created by Huimin Xu, Dechang Cao, Jinling Feng, Hongyang Wu, Jinxing Lin and Yanwei Wang

By: Contributor(s): Material type: TextTextSeries: Journal of plant physiology ; Volume 206Amsterdam: Elsevier GmbH, 2016Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISSN:
  • 0176-1617
Subject(s): LOC classification:
  • QK711.2 JOU
Online resources: Abstract: Cunninghamia lanceolata (Lamb.) Hook., an evergreen conifer distributed in southern China, has been recognized as the most commercially important timber species due to its rapid growth. However, the molecular mechanisms underlying growth alternation due to vascular cambium activity are poorly understood. Here, we used cryosectioning to isolate the vascular cambium tissue of C. lanceolata at three stages, namely, juvenile, transition and mature (3-, 13-, and 35-year-old trees respectively) for transcriptome-wide analysis. Through assembling and annotation of transcripts, 108,767 unigenes and some potential growth-regulated genes were identified. A total of 5213, 4873 and 2541 differentially expressed genes (DEGs) were identified in the three stages. DEGs related to cambial activity, cell division and cell wall modification were detected at various developmental stages of the vascular cambium. In addition, some putative genes involved in plant hormone biosynthesis were also differentially regulated. These results indicate that various cambium-related molecular activities result in alterations in the growth of C. lanceolata, particularly during the transition from juvenile to mature stages. The findings of the present study improve our understanding of cambium development and may aid in studies of the molecular mechanisms of wood production and provide fundamental insights into the establishment of the optimal rotation period for silvicultural trees.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Vol info Status Notes Date due Barcode
Journal Article Journal Article Main Library - Special Collections QK711.2 JOU (Browse shelf(Opens below)) Vol. 200(pages7-17) Not for loan For in house use only

Cunninghamia lanceolata (Lamb.) Hook., an evergreen conifer distributed in southern China, has been recognized as the most commercially important timber species due to its rapid growth. However, the molecular mechanisms underlying growth alternation due to vascular cambium activity are poorly understood. Here, we used cryosectioning to isolate the vascular cambium tissue of C. lanceolata at three stages, namely, juvenile, transition and mature (3-, 13-, and 35-year-old trees respectively) for transcriptome-wide analysis. Through assembling and annotation of transcripts, 108,767 unigenes and some potential growth-regulated genes were identified. A total of 5213, 4873 and 2541 differentially expressed genes (DEGs) were identified in the three stages. DEGs related to cambial activity, cell division and cell wall modification were detected at various developmental stages of the vascular cambium. In addition, some putative genes involved in plant hormone biosynthesis were also differentially regulated. These results indicate that various cambium-related molecular activities result in alterations in the growth of C. lanceolata, particularly during the transition from juvenile to mature stages. The findings of the present study improve our understanding of cambium development and may aid in studies of the molecular mechanisms of wood production and provide fundamental insights into the establishment of the optimal rotation period for silvicultural trees.

There are no comments on this title.

to post a comment.