Midlands State University Library
Image from Google Jackets

Expansion and contraction of Hulun Buir Dunefield in north-eastern China in the last late glacial and Holocene as revealed by OSL dating

By: Contributor(s): Material type: TextTextSeries: Environmental earth sciences ; Volume , number ,Verlag Springer 2013Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
Subject(s): Online resources: Summary: Optical stimulated luminescence (OSL) study on sand and fossil soils from Hulun Buir Dunefield in Eastern China is reported in this paper. Aeolian dune sequences responded to the climate change by alternations of aeolian sand and dark sandy soils, which corresponded to arid and humid conditions, respectively. Optical dating using the single aliquot regeneration technique with quartz was applied to the deposits. The results indicate that the soils and underlying aeolian sand correspond to the Holocene optimum (HO) and the last late glacial, respectively. Combined with studies of OSL dating of 13 profiles and grain-size, magnetic susceptibility, total organic carbon, sediment color and scanning electron microscopy measurements for two representative sections, indicate the expansion in the last late glacial sand was 10 times that of today. The dune field was not totally stabilized by vegetation cover until HO (10–5 ka BP).
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Vol info Status Notes Date due Barcode
Journal Article Journal Article Main Library - Special Collections GE105 ENV (Browse shelf(Opens below)) Vol.68 , No.5 (Marc 2013) Not for loan For In House Use Only

Optical stimulated luminescence (OSL) study on sand and fossil soils from Hulun Buir Dunefield in Eastern China is reported in this paper. Aeolian dune sequences responded to the climate change by alternations of aeolian sand and dark sandy soils, which corresponded to arid and humid conditions, respectively. Optical dating using the single aliquot regeneration technique with quartz was applied to the deposits. The results indicate that the soils and underlying aeolian sand correspond to the Holocene optimum (HO) and the last late glacial, respectively. Combined with studies of OSL dating of 13 profiles and grain-size, magnetic susceptibility, total organic carbon, sediment color and scanning electron microscopy measurements for two representative sections, indicate the expansion in the last late glacial sand was 10 times that of today. The dune field was not totally stabilized by vegetation cover until HO (10–5 ka BP).

There are no comments on this title.

to post a comment.