Midlands State University Library
Image from Google Jackets

Differential accumulation of glycinebetaine and choline monooxygenase in bladder hairs and lamina leaves of Atriplex gmelini under high salinity created by Koichi Tsutsumi, Nana Yamada, Suriyan Cha-um, Yoshito Tanaka and Teruhiro Takabe

By: Contributor(s): Material type: TextTextSeries: Journal of plant physiology ; Volume 176Amsterdam: Elsevier GmbH, 2015Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISSN:
  • 0176-1617
Subject(s): LOC classification:
  • QK711.2 JOU
Online resources: Abstract: Atriplex gmelini is a halophyte and possesses bladder hairs on the leaf surface. It is also known to accumulate the osmoprotectant glycinebetaine (GB). However, it remains unclear whether GB and its biosynthetic enzyme choline monooxygenase (CMO) accumulate in the bladder hairs. Microscopic observation of young leaves showed many bladder hairs on their surfaces, but their total number decreased along with leaf maturity. Sodium Green fluorescent approach revealed Na+ accumulation in bladder cells of young leaves when A. gmelini was grown at high salinity (250 mM NaCl). Due to fewer bladder hairs in mature leaves, Na+ accumulation was mostly found in mesophyll cells of mature leaves under high salinity. GB accumulation was found at significant level in both bladder- and laminae-cells without any addition of NaCl and its content increased at high salinity. CMO was not found in bladder hairs or young leaf laminae. Instead, the CMO protein expression was observed in mature leaves and that showed increased accumulation with increasing concentration of NaCl. Furthermore, in situ hybridization experiments revealed the expression of a transporter gene for GB, AgBetT, in the bladder hairs. Based on these results, the synthesis and translocation of GB in A. gmelini were discussed.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Vol info Status Notes Date due Barcode
Journal Article Journal Article Main Library - Special Collections QK711.2 JOU (Browse shelf(Opens below)) Vol. 176 (pages101-107) Not for loan For in house use only

Atriplex gmelini is a halophyte and possesses bladder hairs on the leaf surface. It is also known to accumulate the osmoprotectant glycinebetaine (GB). However, it remains unclear whether GB and its biosynthetic enzyme choline monooxygenase (CMO) accumulate in the bladder hairs. Microscopic observation of young leaves showed many bladder hairs on their surfaces, but their total number decreased along with leaf maturity. Sodium Green fluorescent approach revealed Na+ accumulation in bladder cells of young leaves when A. gmelini was grown at high salinity (250 mM NaCl). Due to fewer bladder hairs in mature leaves, Na+ accumulation was mostly found in mesophyll cells of mature leaves under high salinity. GB accumulation was found at significant level in both bladder- and laminae-cells without any addition of NaCl and its content increased at high salinity. CMO was not found in bladder hairs or young leaf laminae. Instead, the CMO protein expression was observed in mature leaves and that showed increased accumulation with increasing concentration of NaCl. Furthermore, in situ hybridization experiments revealed the expression of a transporter gene for GB, AgBetT, in the bladder hairs. Based on these results, the synthesis and translocation of GB in A. gmelini were discussed.

There are no comments on this title.

to post a comment.