Midlands State University Library
Image from Google Jackets

Trends and evolution of contamination in a well-dated water reservoir sedimentary archive the Brno Dam, Moravia, Czech Republic

By: Contributor(s): Material type: TextTextSeries: Environmental earth sciences ; Volume , number ,Verlag Springer 2013Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
Subject(s): Online resources: Summary: The sedimentary record from dams can provide important information about stratigraphy and pollution history of densely populated river basins. The Brno Dam is a small reservoir within the Morava River catchment (Czech Republic) accumulating lacustrine sediments since 1940 (dam filling). The stratigraphy of the dam sediments was studied using multiproxy stratigraphic analysis (X-ray densitometry, bulk magnetic susceptibility, diffuse spectral reflectance and cation-exchange capacity) of five sediment cores supported by ground-penetration radar sections. Concentrations of heavy metals were studied by X-ray fluorescence analysis. The thickness of the dam sediments decreases from 220 cm in the proximal part, near the feeder, to only 10 cm in the distal part, near the dyke. Sediments consist predominantly of finely-laminated silty sands, silts and clays. The sedimentation rate for the last ~22 years, inferred from 137Cs dating, decreases from 4.2 cm per year in the proximal part of the dam to 0.29 cm per year in its distal part. Distinct long-term trends were found in the depth profiles of heavy metal concentrations. The heavy metal contents increase significantly after 1940 in all cores, with peak concentrations confined to layers deposited in the 1960s and 1980s. A decreasing trend occurred after 1989 (the decline in Czech heavy industry). The results also show that heavy metal contamination is dependent on lithology (hyperpycnal flow layers related to floods). Increased concentrations of phosphorus in the sediments indicate long-term eutrophication of the dam. Despite the recent decreasing trends in heavy metal concentrations the phosphorus contents remain high in recent years and have caused persisting problems with algal growth in the dam mentioned by previous authors.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Vol info Status Notes Date due Barcode
Journal Article Journal Article Main Library - Special Collections GE105 ENV (Browse shelf(Opens below)) Vol.69 , No.8 (Aug 2013) Not for loan For In House Use Only

The sedimentary record from dams can provide important information about stratigraphy and pollution history of densely populated river basins. The Brno Dam is a small reservoir within the Morava River catchment (Czech Republic) accumulating lacustrine sediments since 1940 (dam filling). The stratigraphy of the dam sediments was studied using multiproxy stratigraphic analysis (X-ray densitometry, bulk magnetic susceptibility, diffuse spectral reflectance and cation-exchange capacity) of five sediment cores supported by ground-penetration radar sections. Concentrations of heavy metals were studied by X-ray fluorescence analysis. The thickness of the dam sediments decreases from 220 cm in the proximal part, near the feeder, to only 10 cm in the distal part, near the dyke. Sediments consist predominantly of finely-laminated silty sands, silts and clays. The sedimentation rate for the last ~22 years, inferred from 137Cs dating, decreases from 4.2 cm per year in the proximal part of the dam to 0.29 cm per year in its distal part. Distinct long-term trends were found in the depth profiles of heavy metal concentrations. The heavy metal contents increase significantly after 1940 in all cores, with peak concentrations confined to layers deposited in the 1960s and 1980s. A decreasing trend occurred after 1989 (the decline in Czech heavy industry). The results also show that heavy metal contamination is dependent on lithology (hyperpycnal flow layers related to floods). Increased concentrations of phosphorus in the sediments indicate long-term eutrophication of the dam. Despite the recent decreasing trends in heavy metal concentrations the phosphorus contents remain high in recent years and have caused persisting problems with algal growth in the dam mentioned by previous authors.

There are no comments on this title.

to post a comment.