Midlands State University Library
Image from Google Jackets

Unit root testing in practice: dealing with uncertainty over the trend and initial condition created by David I. Harvey, Stephen J. Leybourne and A. M. Robert Taylor

By: Contributor(s): Material type: TextTextSeries: Econometric theory ; Volume 25, number 3Cambridge: Cambridge University Press, 2009Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISSN:
  • 02664666
Subject(s): LOC classification:
  • HB139.T52 ECO
Online resources: Abstract: In this paper we focus on two major issues that surround testing for a unit root in practice, namely, (i) uncertainty as to whether or not a linear deterministic trend is present in the data and (ii) uncertainty as to whether the initial condition of the process is (asymptotically) negligible or not. In each case simple testing procedures are proposed with the aim of maintaining good power properties across such uncertainties. For the first issue, if the initial condition is negligible, quasi-differenced (QD) detrended (demeaned) Dickey–Fuller-type unit root tests are near asymptotically efficient when a deterministic trend is (is not) present in the data generating process. Consequently, we compare a variety of strategies that aim to select the detrended variant when a trend is present, and the demeaned variant otherwise. Based on asymptotic and finite-sample evidence, we recommend a simple union of rejections-based decision rule whereby the unit root null hypothesis is rejected whenever either of the detrended or demeaned unit root tests yields a rejection. Our results show that this approach generally outperforms more sophisticated strategies based on auxiliary methods of trend detection. For the second issue, we again recommend a union of rejections decision rule, rejecting the unit root null if either of the QD or ordinary least squares (OLS) detrended/demeaned Dickey–Fuller-type tests rejects. This procedure is also shown to perform well in practice, simultaneously exploiting the superior power of the QD (OLS) detrended/demeaned test for small (large) initial conditions.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Vol info Copy number Status Notes Date due Barcode
Journal Article Journal Article Main Library - Special Collections HB139.T52 ECO (Browse shelf(Opens below)) Vol. 29, no.3 (pages 587-636) SP3258 Not for loan For In House Use Only

In this paper we focus on two major issues that surround testing for a unit root in practice, namely, (i) uncertainty as to whether or not a linear deterministic trend is present in the data and (ii) uncertainty as to whether the initial condition of the process is (asymptotically) negligible or not. In each case simple testing procedures are proposed with the aim of maintaining good power properties across such uncertainties. For the first issue, if the initial condition is negligible, quasi-differenced (QD) detrended (demeaned) Dickey–Fuller-type unit root tests are near asymptotically efficient when a deterministic trend is (is not) present in the data generating process. Consequently, we compare a variety of strategies that aim to select the detrended variant when a trend is present, and the demeaned variant otherwise. Based on asymptotic and finite-sample evidence, we recommend a simple union of rejections-based decision rule whereby the unit root null hypothesis is rejected whenever either of the detrended or demeaned unit root tests yields a rejection. Our results show that this approach generally outperforms more sophisticated strategies based on auxiliary methods of trend detection. For the second issue, we again recommend a union of rejections decision rule, rejecting the unit root null if either of the QD or ordinary least squares (OLS) detrended/demeaned Dickey–Fuller-type tests rejects. This procedure is also shown to perform well in practice, simultaneously exploiting the superior power of the QD (OLS) detrended/demeaned test for small (large) initial conditions.

There are no comments on this title.

to post a comment.