Midlands State University Library
Image from Google Jackets

Unit root and cointegrating limit theory when initialization is in the infinite past created by Peter C. B. Phillips and Tassos Magdalinos

By: Contributor(s): Material type: TextTextSeries: Econometric theory ; Volume 25, number 6Cambridge: Cambridge University Press, 2009Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISSN:
  • 02664666
Subject(s): LOC classification:
  • HB139.T52 ECO
Online resources: Abstract: It is well known that unit root limit distributions are sensitive to initial conditions in the distant past. If the distant past initialization is extended to the infinite past, the initial condition dominates the limit theory, producing a faster rate of convergence, a limiting Cauchy distribution for the least squares coefficient, and a limit normal distribution for the t-ratio. This amounts to the tail of the unit root process wagging the dog of the unit root limit theory. These simple results apply in the case of a univariate autoregression with no intercept. The limit theory for vector unit root regression and cointegrating regression is affected but is no longer dominated by infinite past initializations. The latter contribute to the limiting distribution of the least squares estimator and produce a singularity in the limit theory, but do not change the principal rate of convergence. Usual cointegrating regression theory and inference continue to hold in spite of the degeneracy in the limit theory and are therefore robust to initial conditions that extend to the infinite past.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Vol info Copy number Status Notes Date due Barcode
Journal Article Journal Article Main Library - Special Collections HB139.T52 ECO (Browse shelf(Opens below)) Vol. 25, no.6 (pages 1682-1715) SP3261 Not for loan For In House Use Only

It is well known that unit root limit distributions are sensitive to initial conditions in the distant past. If the distant past initialization is extended to the infinite past, the initial condition dominates the limit theory, producing a faster rate of convergence, a limiting Cauchy distribution for the least squares coefficient, and a limit normal distribution for the t-ratio. This amounts to the tail of the unit root process wagging the dog of the unit root limit theory. These simple results apply in the case of a univariate autoregression with no intercept. The limit theory for vector unit root regression and cointegrating regression is affected but is no longer dominated by infinite past initializations. The latter contribute to the limiting distribution of the least squares estimator and produce a singularity in the limit theory, but do not change the principal rate of convergence. Usual cointegrating regression theory and inference continue to hold in spite of the degeneracy in the limit theory and are therefore robust to initial conditions that extend to the infinite past.

There are no comments on this title.

to post a comment.