Midlands State University Library
Image from Google Jackets

Testing a model to predict online cheating—Much ado about nothing created by Victoria Beck

By: Material type: TextTextSeries: Active Learning in Higher Education ; Volume 15, number 1 ,Thousand Oaks: Sage Publications, 2014Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISSN:
  • 1469-7874
Subject(s): LOC classification:
  • LB2300 ACT
Online resources: Abstract: Much has been written about student and faculty opinions on academic integrity in testing. Currently, concerns appear to focus more narrowly on online testing, generally based on anecdotal assumptions that online students are more likely to engage in academic dishonesty in testing than students in traditional on-campus courses. To address such assumptions, a statistical model to predict examination scores was recently used to predict academic dishonesty in testing. Using measures of human capital variables (for example, grade point average, class rank) to predict examination scores, the model provides for a comparison of R2 statistics. This model proposes that the more human capital variables explain variation in examination scores, the more likely the examination scores reflect students’ abilities and the less likely academic dishonesty was involved in testing. The only study to employ this model did provide some support for the assertion that lack of test monitoring in online courses may result in a greater degree of academic dishonesty. In this study, however, a further test of the predictive model resulted in contradictory findings. The disparate findings between prior research and the current study may have been due to the use of additional control variables and techniques designed to limit academic dishonesty in online testing.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Vol info Status Notes Date due Barcode
Journal Article Journal Article Main Library - Special Collections LB2300 ACT (Browse shelf(Opens below)) Vol. 15, no.1 (pages 65-75) Not for loan For in house use only

Much has been written about student and faculty opinions on academic integrity in testing. Currently, concerns appear to focus more narrowly on online testing, generally based on anecdotal assumptions that online students are more likely to engage in academic dishonesty in testing than students in traditional on-campus courses. To address such assumptions, a statistical model to predict examination scores was recently used to predict academic dishonesty in testing. Using measures of human capital variables (for example, grade point average, class rank) to predict examination scores, the model provides for a comparison of R2 statistics. This model proposes that the more human capital variables explain variation in examination scores, the more likely the examination scores reflect students’ abilities and the less likely academic dishonesty was involved in testing. The only study to employ this model did provide some support for the assertion that lack of test monitoring in online courses may result in a greater degree of academic dishonesty. In this study, however, a further test of the predictive model resulted in contradictory findings. The disparate findings between prior research and the current study may have been due to the use of additional control variables and techniques designed to limit academic dishonesty in online testing.

There are no comments on this title.

to post a comment.