Midlands State University Library
Image from Google Jackets

Memory parameter estimation in the presence of level shifts and deterministic trends created by Adam Mccloskey and Pierre Perron

By: Contributor(s): Material type: TextTextSeries: Econometric Theory ; Volume 29, number 4Cambridge: Cambridge University Press, Press, 2013Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISSN:
  • 02664666
Subject(s): Online resources: Abstract: We propose estimators of the memory parameter of a time series that are robust to a wide variety of random level shift processes, deterministic level shifts and deterministic time trends. The estimators are simple trimmed versions of the popular log-periodogram regression estimator that employ certain sample size-dependent and, in some cases, data-dependent trimmings which discard low-frequency components. We also show that a previously developed trimmed local Whittle estimator is robust to the same forms of data contamination. Regardless of whether the underlying long/shortmemory process is contaminated by level shifts or deterministic trends, the estimators are consistent and asymptotically normal with the same limiting variance as their standard untrimmed counterparts. Simulations show that the trimmed estimators perform their intended purpose quite well, substantially decreasing both finite sample bias and root mean-squared error in the presence of these contaminating components. Furthermore, we assess the tradeoffs involved with their use when such components are not present but the underlying process exhibits strong short-memory dynamics or is contaminated by noise. To balance the potential finite sample biases involved in estimating the memory parameter, we recommend a particular adaptive version of the trimmed log-periodogram estimator that performs well in a wide variety of circumstances. We apply the estimators to stock market volatility data to find that various time series typically thought to be long-memory processes actually appear to be short or very weak long-memory processes contaminated by level shifts or deterministic trends.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Vol info Copy number Status Notes Date due Barcode
Journal Article Journal Article Main Library - Special Collections HB139.T52 ECO (Browse shelf(Opens below)) Vol. 29, no.4 (pages 1196-1237) SP18062 Not for loan For In House Use Only

We propose estimators of the memory parameter of a time series that are robust to a wide variety of random level shift processes, deterministic level shifts and deterministic time trends. The estimators are simple trimmed versions of the popular log-periodogram regression estimator that employ certain sample size-dependent and, in some cases, data-dependent trimmings which discard low-frequency components. We also show that a previously developed trimmed local Whittle estimator is robust to the same forms of data contamination. Regardless of whether the underlying long/shortmemory process is contaminated by level shifts or deterministic trends, the estimators are consistent and asymptotically normal with the same limiting variance as their standard untrimmed counterparts. Simulations show that the trimmed estimators perform their intended purpose quite well, substantially decreasing both finite sample bias and root mean-squared error in the presence of these contaminating components. Furthermore, we assess the tradeoffs involved with their use when such components are not present but the underlying process exhibits strong short-memory dynamics or is contaminated by noise. To balance the potential finite sample biases involved in estimating the memory parameter, we recommend a particular adaptive version of the trimmed log-periodogram estimator that performs well in a wide variety of circumstances. We apply the estimators to stock market volatility data to find that various time series typically thought to be long-memory processes actually appear to be short or very weak long-memory processes contaminated by level shifts or deterministic trends.

There are no comments on this title.

to post a comment.