Midlands State University Library
Image from Google Jackets

Involvement of glutathione in β-cyclodextrin-hemin complex-induced lateral root formation in tomato seedlings created by Dan Zhu, Yudong Mei, Yujian Shi, Dekun Hu, Yong Ren, Quan Gu, Wenbiao Shen, Xin Chen, Lingxi Xu and Liqin Huang

By: Contributor(s): Material type: TextTextSeries: Journal of plant physiology ; Volume 204Amsterdam: Elsevier GmbH, 2016Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISSN:
  • 0176-1617
Subject(s): LOC classification:
  • QK711.2 JOU
Online resources: Abstract: β-cyclodextrin-hemin complex (β-CDH) was shown to induce lateral root (LR) formation in tomato. However, the molecular mechanism is still elusive. In this report, the role of reduced glutathione (GSH) in the induction of lateral root triggered by β-CDH was investigated. Similar to the responses of β-CDH, exogenously applied with 0.1 mο GSH not only increased endogenous GSH content determined by spectrophotography and the monochlorobimane (MCB)-dependent fluorescent analysis, but also induced, thereafter, LR formation. Meanwhile, both β-CDH- and GSH-induced lateral root primordia (LRP) exhibited a similar accelerated anatomic structure. Above inducible responses were blocked significantly when the L-buthionine-(S,R)-sulfoximine (BSO), a potent and specific inhibitor of the enzyme catalyzing the first step of GSH biosynthesis, was separately applied. Upon β-CDH treatment, the changes of endogenous GSH content determined by spectrophotography and fluorescent analysis were consistent with the transcripts of two GSH synthetic genes, GSH1 and GSH2 encoding γ-glutamyl cysteine synthetase and glutathione synthetase, respectively. Exogenously applied with β-CDH could rescue N-1-naphthylphthalamic acid (NPA; IAA depletion)-triggered inhibition of LR formation. Further molecular evidence revealed that both β-CDH and GSH modulated gene expression of cell cycle regulatory genes (CYCA2;1, CYCA3;1, CYCD3;1, and CDKA1) and auxin signaling genes (ARF7 and RSI-1), six marker genes responsible for LR formation. By contrast, above changes were sensitive to the co-treatment with BSO. All together, these results suggest a role for GSH in the regulation of tomato LR development triggered by β-CDH.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Vol info Status Notes Date due Barcode
Journal Article Journal Article Main Library - Special Collections QK711.2 JOU (Browse shelf(Opens below)) Vol. 204 (pages92-100) Not for loan For in house use only

β-cyclodextrin-hemin complex (β-CDH) was shown to induce lateral root (LR) formation in tomato. However, the molecular mechanism is still elusive. In this report, the role of reduced glutathione (GSH) in the induction of lateral root triggered by β-CDH was investigated. Similar to the responses of β-CDH, exogenously applied with 0.1 mο GSH not only increased endogenous GSH content determined by spectrophotography and the monochlorobimane (MCB)-dependent fluorescent analysis, but also induced, thereafter, LR formation. Meanwhile, both β-CDH- and GSH-induced lateral root primordia (LRP) exhibited a similar accelerated anatomic structure. Above inducible responses were blocked significantly when the L-buthionine-(S,R)-sulfoximine (BSO), a potent and specific inhibitor of the enzyme catalyzing the first step of GSH biosynthesis, was separately applied. Upon β-CDH treatment, the changes of endogenous GSH content determined by spectrophotography and fluorescent analysis were consistent with the transcripts of two GSH synthetic genes, GSH1 and GSH2 encoding γ-glutamyl cysteine synthetase and glutathione synthetase, respectively. Exogenously applied with β-CDH could rescue N-1-naphthylphthalamic acid (NPA; IAA depletion)-triggered inhibition of LR formation. Further molecular evidence revealed that both β-CDH and GSH modulated gene expression of cell cycle regulatory genes (CYCA2;1, CYCA3;1, CYCD3;1, and CDKA1) and auxin signaling genes (ARF7 and RSI-1), six marker genes responsible for LR formation. By contrast, above changes were sensitive to the co-treatment with BSO. All together, these results suggest a role for GSH in the regulation of tomato LR development triggered by β-CDH.

There are no comments on this title.

to post a comment.