Midlands State University Library
Image from Google Jackets

Oxidative stress associated with rootstock–scion interactions in pear/quince combinations during early stages of graft development created by Patricia Irisarri, Piotr Binczycki, Pilar Errea, Helle Juel Martens, Ana Pina

By: Contributor(s): Material type: TextTextSeries: Journal of plant physiology ; Volume 176Amsterdam: Elsevier GmbH, 2015Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISSN:
  • 0176-1617
Subject(s): LOC classification:
  • QK711.2 JOU
Online resources: Abstract: Exposing a plant to stress situations, such as grafting, generally triggers antioxidant defense systems. In fruit tree grafting, quince (Cydonia oblonga) is widely used as a rootstock for pear (Pyrus communis L.), but several economically important pear cultivars are incompatible with available quince rootstocks. In this study, grafts were established using an in vitro callus graft system mimicking the events taking place in fruit trees. In vitro grown callus from pear [P. communis L. cv. ‘Conference’ (Co) and cv. ‘William’ (Wi)] and quince (C. oblonga Mill. clone ‘BA29’) was used to establish the compatible homografts ‘Co/Co’, ‘Wi/Wi’ and ‘BA29/BA29’, the compatible heterograft ‘Co/BA29’ and the incompatible heterograft ‘Wi/BA29’. The main objective was to determine whether specific isoforms of genes involved in oxidative stress [superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT)] are differentially expressed at the graft interface from compatible and incompatible unions throughout 3 weeks after grafting. Reactive oxygen species (ROS) levels and programmed cell death were also evaluated in the course of graft development. Genes differentially expressed between compatible and incompatible heterografts were identified. Transcript levels of six antioxidant genes (SOD1, SOD3, APX3, APX6, CAT1 and CAT3) were down-regulated 10 days after grafting (DAG) in the incompatible heterograft in comparison to the compatible one. Likewise, SOD enzymatic activities were significantly higher at 1 and 10 days after wounding in the compatible cultivar ‘Co’ than in the incompatible one ‘Wi’. These findings, together with live cell imaging of ROS-specific probes, ultrastructural mitochondrial changes and DNA fragmentation related to apoptotic processes, give indications that within incompatible rootstock/scion interfaces, either the level of ROS is increased or there is a less efficient detoxification system.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Vol info Status Notes Date due Barcode
Journal Article Journal Article Main Library Journal Article QK711.2 JOU (Browse shelf(Opens below)) Vol. 176 (pages25-35) Not for loan For in house use only

Exposing a plant to stress situations, such as grafting, generally triggers antioxidant defense systems. In fruit tree grafting, quince (Cydonia oblonga) is widely used as a rootstock for pear (Pyrus communis L.), but several economically important pear cultivars are incompatible with available quince rootstocks. In this study, grafts were established using an in vitro callus graft system mimicking the events taking place in fruit trees. In vitro grown callus from pear [P. communis L. cv. ‘Conference’ (Co) and cv. ‘William’ (Wi)] and quince (C. oblonga Mill. clone ‘BA29’) was used to establish the compatible homografts ‘Co/Co’, ‘Wi/Wi’ and ‘BA29/BA29’, the compatible heterograft ‘Co/BA29’ and the incompatible heterograft ‘Wi/BA29’. The main objective was to determine whether specific isoforms of genes involved in oxidative stress [superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT)] are differentially expressed at the graft interface from compatible and incompatible unions throughout 3 weeks after grafting. Reactive oxygen species (ROS) levels and programmed cell death were also evaluated in the course of graft development. Genes differentially expressed between compatible and incompatible heterografts were identified. Transcript levels of six antioxidant genes (SOD1, SOD3, APX3, APX6, CAT1 and CAT3) were down-regulated 10 days after grafting (DAG) in the incompatible heterograft in comparison to the compatible one. Likewise, SOD enzymatic activities were significantly higher at 1 and 10 days after wounding in the compatible cultivar ‘Co’ than in the incompatible one ‘Wi’. These findings, together with live cell imaging of ROS-specific probes, ultrastructural mitochondrial changes and DNA fragmentation related to apoptotic processes, give indications that within incompatible rootstock/scion interfaces, either the level of ROS is increased or there is a less efficient detoxification system.

There are no comments on this title.

to post a comment.