Midlands State University Library
Image from Google Jackets

Quantum chemical investigation of thermochemistry in Calvin cycle / created by Dibyendu Mondal, Tumpa Sadhukhan, Iqbal A. Latif and Sambhu N. Datta

By: Contributor(s): Material type: TextTextSeries: Journal of chemical sciences ; Volume 127, number 12,Bangalore : Springer, 2015Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISSN:
  • 09743626
Subject(s): LOC classification:
  • QD31 JOU
Online resources: Abstract: This work aims to verify the experimental thermochemistry of the reactions involved in Calvin cycle that produces glucose equivalent by using products from the light-activated reactions in chloroplast. The molecular geometry of each involved species in water has been optimized by density functional theory using SCRF-PCM methodology at M06-2X/6-311 ++G(3df,3pd) level. The thermal correction to Gibbs free energy of each solute has been calculated at the same level of theory. An explicit accounting of the intramolecular and intermolecular hydrogen bonding has been made for each solute molecule by using theoretically determined values from different sources. These data have been added together to obtain the standard Gibbs free energy G Ø for each molecule in solution. Finally, the free energy change ΔG of each involved reaction has been determined using the experimental concentrations under physiological conditions. The calculated ΔG values are generally in good agreement with the experimentally found free energy changes, with only a few relatively large deviations. Five regulating steps with moderately large and negative ΔG have been identified, whereas only three of them were clearly identified from experiment. We particularly show that the steps involving the formation of G3P from 3-PG and the regeneration of RuBP from Ru5P are thermodynamically strongly favored, and therefore, they take part in driving the metabolic process. We have illustrated Calvin cycle by vividly distinguishing the controlling steps from the potentially reversible reactions.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Vol info Status Notes Date due Barcode
Journal Article Journal Article Main Library - Special Collections QD31 JOU (Browse shelf(Opens below)) Vol. 127, no.12 (pages 2231-2240) Not for loan For in house use only

This work aims to verify the experimental thermochemistry of the reactions involved in Calvin cycle that produces glucose equivalent by using products from the light-activated reactions in chloroplast. The molecular geometry of each involved species in water has been optimized by density functional theory using SCRF-PCM methodology at M06-2X/6-311 ++G(3df,3pd) level. The thermal correction to Gibbs free energy of each solute has been calculated at the same level of theory. An explicit accounting of the intramolecular and intermolecular hydrogen bonding has been made for each solute molecule by using theoretically determined values from different sources. These data have been added together to obtain the standard Gibbs free energy G Ø for each molecule in solution. Finally, the free energy change ΔG of each involved reaction has been determined using the experimental concentrations under physiological conditions. The calculated ΔG values are generally in good agreement with the experimentally found free energy changes, with only a few relatively large deviations. Five regulating steps with moderately large and negative ΔG have been identified, whereas only three of them were clearly identified from experiment. We particularly show that the steps involving the formation of G3P from 3-PG and the regeneration of RuBP from Ru5P are thermodynamically strongly favored, and therefore, they take part in driving the metabolic process. We have illustrated Calvin cycle by vividly distinguishing the controlling steps from the potentially reversible reactions.

There are no comments on this title.

to post a comment.