Pyrolysis of 3-carene : experiment, theory and modeling / created by N. Sharath, H. K. Chakravarty, K. P. J. Reddy, P K Barhai and E. Arunan
Material type:
- text
- unmediated
- volume
- 09743626
- QD31 JOU
Item type | Current library | Call number | Vol info | Status | Notes | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|
![]() |
Main Library - Special Collections | QD31 JOU (Browse shelf(Opens below)) | Vol. 127, no.12 (pages 2119-2135) | Not for loan | For in house use only |
Browsing Main Library shelves, Shelving location: - Special Collections Close shelf browser (Hides shelf browser)
Thermal decomposition studies of 3-carene, a bio-fuel, have been carried out behind the reflected shock wave in a single pulse shock tube for temperature ranging from 920 K to 1220 K. The observed products in thermal decomposition of 3-carene are acetylene, allene, butadiene, isoprene, cyclopentadiene, hexatriene, benzene, toluene and p-xylene. The overall rate constant for 3-carene decomposition was found to be $ \mathrm {k/s}^{-1}=10^{(9.95\,\pm \,0.54)}\; \exp (-40.88 \pm 2.71 \, \mathrm {kcal mol}^{\mathrm {-1}}/\text {RT}) . $ Ab-initio theoretical calculations were carried out to find the minimum energy pathway that could explain the formation of the observed products in the thermal decomposition experiments. These calculations were carried out at B3LYP/6-311 + G(d,p) and G3 level of theories. A kinetic mechanism explaining the observed products in the thermal decomposition experiments has been derived. It is concluded that the linear hydrocarbons are the primary products in the pyrolysis of 3-carene.
There are no comments on this title.