Midlands State University Library
Image from Google Jackets

Studies on 12 V substrate-integrated lead-carbon hybrid ultracapacitors / created by Anjan Banerjee and Ashok Kumar Shukla

By: Contributor(s): Material type: TextTextSeries: Journal of chemical sciences ; Volume 127, number 5,Bangalore : Springer, 2015Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISSN:
  • 09743626
Subject(s): LOC classification:
  • QD31 JOU
Online resources: Abstract: A cost-effective 12 V substrate-integrated lead-carbon hybrid ultracapacitor is developed and performance tested. These hybrid ultracapacitors employ flexible-graphite sheets as negative plate current-collectors that are coated amperometrically with a thin layer of conducting polymer, namely poly-aniline to provide good adhesivity to activated-carbon layer. The positive plate of the hybrid ultracapacitors comprise conventional lead-sheet that is converted electrochemically into a substrate-integrated lead-dioxide electrode. 12 V substrate-integrated lead-carbon hybrid ultracapacitors both in absorbent-glass-mat and polymeric silica-gel electrolyte configurations are fabricated and characterized. It is possible to realize 12 V configurations with capacitance values of ∼200 F and ∼300 F, energy densities of ∼1.9 Wh kg−1 and ∼2.5 Wh kg−1 and power densities of ∼2 kW kg−1 and ∼0.8 kW kg−1, respectively, having faradaic-efficiency values of ∼90 % with cycle-life in excess of 100,000 cycles. The effective cost of the mentioned hybrid ultracapacitors is estimated to be about ∼4 US$/Wh as compared to ∼20 US$/Wh for commercially available ultracapacitors.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

A cost-effective 12 V substrate-integrated lead-carbon hybrid ultracapacitor is developed and performance tested. These hybrid ultracapacitors employ flexible-graphite sheets as negative plate current-collectors that are coated amperometrically with a thin layer of conducting polymer, namely poly-aniline to provide good adhesivity to activated-carbon layer. The positive plate of the hybrid ultracapacitors comprise conventional lead-sheet that is converted electrochemically into a substrate-integrated lead-dioxide electrode. 12 V substrate-integrated lead-carbon hybrid ultracapacitors both in absorbent-glass-mat and polymeric silica-gel electrolyte configurations are fabricated and characterized. It is possible to realize 12 V configurations with capacitance values of ∼200 F and ∼300 F, energy densities of ∼1.9 Wh kg−1 and ∼2.5 Wh kg−1 and power densities of ∼2 kW kg−1 and ∼0.8 kW kg−1, respectively, having faradaic-efficiency values of ∼90 % with cycle-life in excess of 100,000 cycles. The effective cost of the mentioned hybrid ultracapacitors is estimated to be about ∼4 US$/Wh as compared to ∼20 US$/Wh for commercially available ultracapacitors.

There are no comments on this title.

to post a comment.