Midlands State University Library
Image from Google Jackets

Productivity, absorbed photosynthetically active radiation, and light use efficiency in crops: implications for remote sensing of crop primary production created by Anatoly A. Gitelson, Yi Peng, Timothy J. Arkebauer, Andrew E. Suyker

By: Contributor(s): Material type: TextTextSeries: Journal of Plant Physiology ; Volume 177Amsterdam: Elsevier GmbH, 2015Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISSN:
  • 0176-1617
Subject(s): LOC classification:
  • QK711.2 JOU
Online resources: Abstract: Vegetation productivity metrics such as gross primary production (GPP) at the canopy scale are greatly affected by the efficiency of using absorbed radiation for photosynthesis, or light use efficiency (LUE). Thus, close investigation of the relationships between canopy GPP and photosynthetically active radiation absorbed by vegetation is the basis for quantification of LUE. We used multiyear observations over irrigated and rainfed contrasting C3 (soybean) and C4 (maize) crops having different physiology, leaf structure, and canopy architecture to establish the relationships between canopy GPP and radiation absorbed by vegetation and quantify LUE. Although multiple LUE definitions are reported in the literature, we used a definition of efficiency of light use by photosynthetically active “green” vegetation (LUEgreen) based on radiation absorbed by “green” photosynthetically active vegetation on a daily basis. We quantified, irreversible slowly changing seasonal (constitutive) and rapidly day-to-day changing (facultative) LUEgreen, as well as sensitivity of LUEgreen to the magnitude of incident radiation and drought events. Large (2–3-fold) variation of daily LUEgreen over the course of a growing season that is governed by crop physiological and phenological status was observed. The day-to-day variations of LUEgreen oscillated with magnitude 10–15% around the seasonal LUEgreen trend and appeared to be closely related to day-to-day variations of magnitude and composition of incident radiation. Our results show the high variability of LUEgreen between C3 and C4 crop species (1.43 gC/MJ vs. 2.24 gC/MJ, respectively), as well as within single crop species (i.e., maize or soybean). This implies that assuming LUEgreen as a constant value in GPP models is not warranted for the crops studied, and brings unpredictable uncertainties of remote GPP estimation, which should be accounted for in LUE models. The uncertainty of GPP estimation due to facultative and constitutive changes in LUEgreen can be considered as a critical component of the total error budget in the context of remotely sensed based estimations of GPP. The quantitative framework of LUEgreen estimation presented here offers a way of characterizing LUEgreen in plants that can be used to assess their phenological and physiological status and vulnerability to drought under current and future climatic conditions and is essential for calibration and validation of globally applied LUE algorithms.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Vol info Status Notes Date due Barcode
Journal Article Journal Article Main Library - Special Collections QK711.2 JOU (Browse shelf(Opens below)) Vol. 177 (pages100-109) Not for loan For in house use only

Vegetation productivity metrics such as gross primary production (GPP) at the canopy scale are greatly affected by the efficiency of using absorbed radiation for photosynthesis, or light use efficiency (LUE). Thus, close investigation of the relationships between canopy GPP and photosynthetically active radiation absorbed by vegetation is the basis for quantification of LUE. We used multiyear observations over irrigated and rainfed contrasting C3 (soybean) and C4 (maize) crops having different physiology, leaf structure, and canopy architecture to establish the relationships between canopy GPP and radiation absorbed by vegetation and quantify LUE. Although multiple LUE definitions are reported in the literature, we used a definition of efficiency of light use by photosynthetically active “green” vegetation (LUEgreen) based on radiation absorbed by “green” photosynthetically active vegetation on a daily basis. We quantified, irreversible slowly changing seasonal (constitutive) and rapidly day-to-day changing (facultative) LUEgreen, as well as sensitivity of LUEgreen to the magnitude of incident radiation and drought events. Large (2–3-fold) variation of daily LUEgreen over the course of a growing season that is governed by crop physiological and phenological status was observed. The day-to-day variations of LUEgreen oscillated with magnitude 10–15% around the seasonal LUEgreen trend and appeared to be closely related to day-to-day variations of magnitude and composition of incident radiation. Our results show the high variability of LUEgreen between C3 and C4 crop species (1.43 gC/MJ vs. 2.24 gC/MJ, respectively), as well as within single crop species (i.e., maize or soybean). This implies that assuming LUEgreen as a constant value in GPP models is not warranted for the crops studied, and brings unpredictable uncertainties of remote GPP estimation, which should be accounted for in LUE models. The uncertainty of GPP estimation due to facultative and constitutive changes in LUEgreen can be considered as a critical component of the total error budget in the context of remotely sensed based estimations of GPP. The quantitative framework of LUEgreen estimation presented here offers a way of characterizing LUEgreen in plants that can be used to assess their phenological and physiological status and vulnerability to drought under current and future climatic conditions and is essential for calibration and validation of globally applied LUE algorithms.

There are no comments on this title.

to post a comment.