Midlands State University Library
Image from Google Jackets

Evidence for alternative splicing mechanisms in meadow fescue (Festuca pratensis) and perennial ryegrass (Lolium perenne) Rubisco activase gene created by Barbara Jurczyk, Katarzyna Hura, Anna Trzemecka and Marcin Rapacz

By: Contributor(s): Material type: TextTextSeries: Journal of plant physiology ; Volume 176Amsterdam: Elsevier GmbH, 2015Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISSN:
  • 0176-1617
Subject(s): LOC classification:
  • QK711.2 JOU
Online resources: Abstract: Rubisco activase is required to regulate the catalytic activity of Rubisco in plants, in an ATP-dependent manner. One or two Rubisco activase proteins have been identified in different plant species. In some species, the two isoforms are the products of alternative splicing of the Rubisco activase gene. The aim of this study was to confirm that Lolium perenne and Festuca pratensis plants have two isoforms of Rubisco activase and that they are the products of alternative splicing of common pre-mRNA. Protein gel blot analyses indicated that L. perenne and F. pratensis leaves contained two Rubisco activase proteins. Sequence analysis of cDNA and genomic DNA showed that differential splicing generated two mRNAs that differed in sequence only in the inclusion of 48 bp. The insertion contains a stop codon leading to the synthesis of a shorter polypeptide. Under the conditions of our experiment, the shorter splicing variant of L. perenne and F. pratensis Rubisco activase gene was preferentially produced. Any further studies concerning Rubisco activase genes in L. perenne and/or F. pratensis plants should take into consideration the mechanism of its expression.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Vol info Status Notes Date due Barcode
Journal Article Journal Article Main Library - Special Collections QK711.2 JOU (Browse shelf(Opens below)) Vol. 176 (pages61-64) Not for loan For in house use only

Rubisco activase is required to regulate the catalytic activity of Rubisco in plants, in an ATP-dependent manner. One or two Rubisco activase proteins have been identified in different plant species. In some species, the two isoforms are the products of alternative splicing of the Rubisco activase gene. The aim of this study was to confirm that Lolium perenne and Festuca pratensis plants have two isoforms of Rubisco activase and that they are the products of alternative splicing of common pre-mRNA. Protein gel blot analyses indicated that L. perenne and F. pratensis leaves contained two Rubisco activase proteins. Sequence analysis of cDNA and genomic DNA showed that differential splicing generated two mRNAs that differed in sequence only in the inclusion of 48 bp. The insertion contains a stop codon leading to the synthesis of a shorter polypeptide. Under the conditions of our experiment, the shorter splicing variant of L. perenne and F. pratensis Rubisco activase gene was preferentially produced. Any further studies concerning Rubisco activase genes in L. perenne and/or F. pratensis plants should take into consideration the mechanism of its expression.

There are no comments on this title.

to post a comment.