In silico characterization of DNA motifs associated with the differential expression of the ornithine decarboxylase gene during in vitro cystocarp development in the red seaweed Grateloupia imbricata created by Montserrat Montero-Fernández , Rafael R. Robaina and Pilar Garcia-Jimenez
Material type:
- text
- unmediated
- volume
- 0176-1617
- QK711.2 JOU
Item type | Current library | Call number | Vol info | Status | Notes | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|
![]() |
Main Library - Special Collections | QK711.2 JOU (Browse shelf(Opens below)) | Vol. 195 (pages31-38) | Not for loan | https://doi.org/10.1016/j.jplph.2016.02.018 Get rights and content |
Browsing Main Library shelves, Shelving location: - Special Collections Close shelf browser (Hides shelf browser)
To gain a better understanding of the regulatory mechanism(s) modulating expression of the ornithine decarboxylase gene ODC during cystocarp development in the red seaweed Grateloupia imbricata, DNA motifs found in the 5′-upstream region of the gene were identified by in silico analysis. In addition, when infertile G. imbricata thalli were treated with ethylene, methyl jasmonate, or light as an elicitor of cystocarp development, different ODC expression patterns were observed. ODC expression correlated with (i) the elicitation (treatment) period and the period post-treatment just prior to observation of the first visible developing cystocarps (disclosure period), and (ii) the type of elicitor. Ethylene and light activated ODC expression during the elicitation period, and methyl jasmonate activated its expression during the disclosure period, suggesting that initiation and cystocarp development may involve more than one signaling pathway. In addition, expression of ODC was 450-fold greater when thalli were stimulated by ethylene compared with untreated control thalli, suggesting that G. imbricata mounts an efficient response to sense and activate ethylene-responsive signaling pathways. The patterns of differential ODC expression induced by the different elicitors during cystocarp development might provide an useful tool for characterizing the precise transcriptional regulation of ODC in G. imbricata.
There are no comments on this title.