Midlands State University Library
Image from Google Jackets

Sweet potato cysteine proteases SPAE and SPCP2 participate in sporamin degradation during storage root sprouting created by Hsien-Jung Chen, Shu-Hao Liang, Guan-Jhong Huang and Yaw-Huei Lin

By: Contributor(s): Material type: TextTextSeries: Journal of plant physiology ; Volume 186-187Amsterdam: Elsevier GmbH, 2015Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISSN:
  • 0176-1617
Subject(s): LOC classification:
  • QK711.2 JOU
Online resources: Abstract: Sweet potato sporamins are trypsin inhibitors and exhibit strong resistance to digestion by pepsin, trypsin and chymotrypsin. In addition, they constitute the major storage proteins in the sweet potato and, after degradation, provide nitrogen as a nutrient for seedling regrowth in sprouting storage roots. In this report, four cysteine proteases—one asparaginyl endopeptidase (SPAE), two papain-like cysteine proteases (SPCP1 and SPCP2), and one granulin-containing cysteine protease (SPCP3)—were studied to determine their association with sporamin degradation in sprouting storage roots. Sporamin degradation became significant in the flesh of storage roots starting from week 4 after sprouting and this correlated with expression levels of SPAE and SPCP2, but not of SPCP1 and SPCP3. In the outer flesh near the skin, sporamin degradation was more evident and occurred earlier than in the inner flesh of storage roots. Degradation of sporamins in the outer flesh was inversely correlated with the distance of the storage root from the sprout. Exogenous application of SPAE and SPCP2, but not SPCP3, fusion proteins to crude extracts of the outer flesh (i.e., extracted from a depth of 0.3 cm and within 2 cm of one-week-old sprouts) promoted in vitro sporamin degradation in a dose-dependent manner. Pre-treatment of SPAE and SPCP2 fusion proteins at 95 °C for 5 min prior to their application to the crude extracts reduced sporamin degradation. These data show that sweet potato asparaginyl endopeptidase SPAE and papain-like cysteine protease SPCP2 participate in sporamin degradation during storage root sprouting.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

Sweet potato sporamins are trypsin inhibitors and exhibit strong resistance to digestion by pepsin, trypsin and chymotrypsin. In addition, they constitute the major storage proteins in the sweet potato and, after degradation, provide nitrogen as a nutrient for seedling regrowth in sprouting storage roots. In this report, four cysteine proteases—one asparaginyl endopeptidase (SPAE), two papain-like cysteine proteases (SPCP1 and SPCP2), and one granulin-containing cysteine protease (SPCP3)—were studied to determine their association with sporamin degradation in sprouting storage roots. Sporamin degradation became significant in the flesh of storage roots starting from week 4 after sprouting and this correlated with expression levels of SPAE and SPCP2, but not of SPCP1 and SPCP3. In the outer flesh near the skin, sporamin degradation was more evident and occurred earlier than in the inner flesh of storage roots. Degradation of sporamins in the outer flesh was inversely correlated with the distance of the storage root from the sprout. Exogenous application of SPAE and SPCP2, but not SPCP3, fusion proteins to crude extracts of the outer flesh (i.e., extracted from a depth of 0.3 cm and within 2 cm of one-week-old sprouts) promoted in vitro sporamin degradation in a dose-dependent manner. Pre-treatment of SPAE and SPCP2 fusion proteins at 95 °C for 5 min prior to their application to the crude extracts reduced sporamin degradation. These data show that sweet potato asparaginyl endopeptidase SPAE and papain-like cysteine protease SPCP2 participate in sporamin degradation during storage root sprouting.

There are no comments on this title.

to post a comment.