Histone deacetylation-mediated cellular dedifferentiation in Arabidopsis created by Kyounghee Lee, Ok-Sun Park, Su-Jin Jung and Pil Joon Seo
Material type:
- text
- unmediated
- volume
- 0176-1617
- QK711.2 JOU
Item type | Current library | Call number | Vol info | Status | Notes | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|
![]() |
Main Library - Special Collections | QK711.2 JOU (Browse shelf(Opens below)) | Vol. 191(pages95-100) | Not for loan | For in house use only |
Chromatin structure determines the accessibility of transcriptional regulators to target DNA and contributes to regulation of gene expression. Posttranslational modifications of core histone proteins underlie the reversible changes in chromatin structure. Epigenetic regulation is closely associated with cellular differentiation. Consistently, we found that histone deacetylation is required for callus formation from leaf explants in Arabidopsis . Treatment with trichostatin A (TSA) led to defective callus formation on callus-inducing medium (CIM). Gene expression profiling revealed that a subset of HDAC genes, including HISTONE DEACETYLASE 9 (HDA9), HD-TUINS PROTEIN 1 (HDT1), HDT2, HDT4, and SIRTUIN 1 (SRT1), was significantly up-regulated in calli. In support of this, genetic mutations of HDA9 or HDT1 showed reduced capability of callus formation, probably owing to their roles in regulating auxin and embryonic and meristematic developmental signaling. Taken together, our findings suggest that histone deacetylation is intimately associated with the leaf-to-callus transition, and multiple signaling pathways are controlled by means of histone modification during cellular dedifferentiation.
There are no comments on this title.