Midlands State University Library
Image from Google Jackets

Legume nodules from nutrient-poor soils exhibit high plasticity of cellular phosphorus recycling and conservation during variable phosphorus supply created by Waafeka Vardien, Emma T. Steenkamp and Alexander J. Valentine

By: Contributor(s): Material type: TextTextSeries: Journal of plant physiology ; Volume 191Amsterdam: Elsevier GmbH, 2016Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISSN:
  • 0176-1617
Subject(s): LOC classification:
  • QK711.2 JOU
Online resources: Abstract: Nitrogen fixing legumes rely on phosphorus for nodule formation, nodule function and the energy costs of fixation. Phosphorus is however very limited in soils, especially in ancient sandstone-derived soils such as those in the Cape Floristic Region of South Africa. Plants growing in such areas have evolved the ability to tolerate phosphorus stress by eliciting an array of physiological and biochemical responses. In this study we investigated the effects of phosphorus limitation on N2 fixation and phosphorus recycling in the nodules of Virgilia divaricata (Adamson), a legume native to the Cape Floristic Region. In particular, we focused on nutrient acquisition efficiencies, phosphorus fractions and the exudation and accumulation of phosphatases. Our finding indicate that during low phosphorus supply, V. divaricata internally recycles phosphorus and has a lower uptake rate of phosphorus, as well as lower levels adenylates but greater levels of phosphohydrolase exudation suggesting it engages in recycling internal nodule phosphorus pools and making use of alternate bypass routes in order to conserve phosphorus.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Vol info Status Notes Date due Barcode
Journal Article Journal Article Main Library - Special Collections QK711.2 JOU (Browse shelf(Opens below)) Vol. 191(pages73-81) Not for loan For in house use only

Nitrogen fixing legumes rely on phosphorus for nodule formation, nodule function and the energy costs of fixation. Phosphorus is however very limited in soils, especially in ancient sandstone-derived soils such as those in the Cape Floristic Region of South Africa. Plants growing in such areas have evolved the ability to tolerate phosphorus stress by eliciting an array of physiological and biochemical responses. In this study we investigated the effects of phosphorus limitation on N2 fixation and phosphorus recycling in the nodules of Virgilia divaricata (Adamson), a legume native to the Cape Floristic Region. In particular, we focused on nutrient acquisition efficiencies, phosphorus fractions and the exudation and accumulation of phosphatases. Our finding indicate that during low phosphorus supply, V. divaricata internally recycles phosphorus and has a lower uptake rate of phosphorus, as well as lower levels adenylates but greater levels of phosphohydrolase exudation suggesting it engages in recycling internal nodule phosphorus pools and making use of alternate bypass routes in order to conserve phosphorus.

There are no comments on this title.

to post a comment.