Midlands State University Library
Image from Google Jackets

Reaction kinetics of the jasmonate-isoleucine complex formation during wound-induced plant defense responses: a model-based re-analysis of published data created by S Chiangga, W Pornkaveerat and T D Frank

By: Contributor(s): Material type: TextTextSeries: Journal of plant physiology ; Volume 206Amsterdam: Elsevier GmbH, 2016Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISSN:
  • 0176-1617
Subject(s): LOC classification:
  • QK711.2 JOU
Online resources: Abstract: Three studies were considered in which jasmonate-isoleucine levels were observed for several hours after plant wounding. The data from these studies were fitted to a first order kinetical model describing jasmonate-isoleucine complex formation and dissociation. It was found that the model could explain up to 97 percent of the variations in the data sets. In general, the data re-analysis confirmed that the protein–protein interactions involved in the biosynthesis and dissociation of the jasmonate-isoleucine complex are fast relative to the dynamics of the jasmonate levels themselves. Moreover, the data re-analysis supported the notion that transgenic plant manipulations affecting the defense-responses in plants not only affect the jasmonate-isoleucine levels indirectly by affecting jasmonate levels during plant responses. Rather, it seems that transgenic plant manipulations affect kinetic rate parameters of the jasmonate-isoleucine complex formation and dissociation reactions. In addition to these general findings, several specific conclusions for the three experimental studies were obtained.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

Three studies were considered in which jasmonate-isoleucine levels were observed for several hours after plant wounding. The data from these studies were fitted to a first order kinetical model describing jasmonate-isoleucine complex formation and dissociation. It was found that the model could explain up to 97 percent of the variations in the data sets. In general, the data re-analysis confirmed that the protein–protein interactions involved in the biosynthesis and dissociation of the jasmonate-isoleucine complex are fast relative to the dynamics of the jasmonate levels themselves. Moreover, the data re-analysis supported the notion that transgenic plant manipulations affecting the defense-responses in plants not only affect the jasmonate-isoleucine levels indirectly by affecting jasmonate levels during plant responses. Rather, it seems that transgenic plant manipulations affect kinetic rate parameters of the jasmonate-isoleucine complex formation and dissociation reactions. In addition to these general findings, several specific conclusions for the three experimental studies were obtained.

There are no comments on this title.

to post a comment.