Midlands State University Library
Image from Google Jackets

Cotton radiation use efficiency response to plant growth regulators/ created by Evangelos D. Gonias, Derrick Oosterhuis and Androniki Bibi

By: Contributor(s): Material type: TextTextSeries: Journal of agricultural science ; Volume 150, number 5,Cambridge : Cambridge University Press, 2012Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISSN:
  • 00218596
Subject(s): LOC classification:
  • S3 JOU
Online resources: Abstract: Plant growth regulators are widely used in cotton production to improve crop management. Previous research has demonstrated changes in crop growth, dry matter (DM) partitioning and lint yield of cotton after the application of plant growth regulators. However, no reports are available demonstrating the effect of plant growth regulators on light interception and radiation use efficiency (RUE). Field studies were conducted in Fayetteville, Arkansas, USA in 2006 and 2007. RUE was estimated for the period between the pinhead square stage (PHS) of growth and 3 weeks after first flower (FF+3) from plots receiving three applications of the nitrophenolate and mepiquat chloride with Bacillus cereus plant growth regulators (Chaperone™) at 7·19 g a.i./ha and Pix Plus® at 41·94 g a.i./ha compared with an untreated control. No differences between the Chaperone treatment and the untreated control were found in the present study. However, Pix Plus significantly reduced plant height (both 2006 and 2007) and leaf area (2007 only), and altered the canopy structure of the crop as recorded by increased values of canopy extinction coefficient. Although DM accumulation was found not to be affected by plant growth regulator treatments, RUE was significantly increased after Pix Plus application, by 33·2%. RUE was increased because less light was intercepted by the Pix Plus treatment for the same biomass production, and this is probably a result of changes in photosynthetic capacity of the leaves and changes in light distribution throughout the canopy.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Vol info Status Notes Date due Barcode
Journal Article Journal Article Main Library - Special Collections S3 JOU (Browse shelf(Opens below)) Vol. 150, no.5 (pages 595-602) Not for loan For in house use only

Plant growth regulators are widely used in cotton production to improve crop management. Previous research has demonstrated changes in crop growth, dry matter (DM) partitioning and lint yield of cotton after the application of plant growth regulators. However, no reports are available demonstrating the effect of plant growth regulators on light interception and radiation use efficiency (RUE). Field studies were conducted in Fayetteville, Arkansas, USA in 2006 and 2007. RUE was estimated for the period between the pinhead square stage (PHS) of growth and 3 weeks after first flower (FF+3) from plots receiving three applications of the nitrophenolate and mepiquat chloride with Bacillus cereus plant growth regulators (Chaperone™) at 7·19 g a.i./ha and Pix Plus® at 41·94 g a.i./ha compared with an untreated control. No differences between the Chaperone treatment and the untreated control were found in the present study. However, Pix Plus significantly reduced plant height (both 2006 and 2007) and leaf area (2007 only), and altered the canopy structure of the crop as recorded by increased values of canopy extinction coefficient. Although DM accumulation was found not to be affected by plant growth regulator treatments, RUE was significantly increased after Pix Plus application, by 33·2%. RUE was increased because less light was intercepted by the Pix Plus treatment for the same biomass production, and this is probably a result of changes in photosynthetic capacity of the leaves and changes in light distribution throughout the canopy.

There are no comments on this title.

to post a comment.