Midlands State University Library
Image from Google Jackets

Artificial neural network cost flow risk assessment model created by Henry A. Odeyinka,John Lowe and Ammar P. Kaka

By: Contributor(s): Material type: TextTextSeries: Construction Management and Economics ; Volume 31, number 4-6Abingdon: Taylor and Francis, 2013Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISSN:
  • 01446193
Subject(s): LOC classification:
  • HD9715.A1 CON
Online resources: Abstract: Previous attempts have been made to model cash flow forecast at the tender stage using net cash flow, value flow and cost flow approaches. Despite these efforts, significant variations between the actual and modelled forecasts were still observable. The main cause identified is the issue of risk inherent in construction. Using the cost flow approach, a model is developed to assess the impacts of risk occurring during the construction stage on the initial forecast cost flow. A questionnaire survey and case study approach were employed. As a first step, a questionnaire survey was administered to UK construction contractors to determine the significant risk factors impacting on their cost flow forecast. Using mean ranking analysis, the survey yielded 11 significant risk factors. The second stage of data collection involves the collection of forecast and actual cost flow data from case study projects to establish their variations at predetermined time periods. Using the significant risk factors identified in the first phase, relevant construction professionals who worked on the case study projects were requested to score the extent of risk occurrence that resulted in the observed variations. A combination of these two sets of data was used to model the impact of risk on cost flow forecast using an artificial neural network back propagation algorithm. The model enables a contractor to predict the likely changes to a cost flow profile due to risks occurring in the construction stage.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Vol info Copy number Status Notes Date due Barcode
Journal Article Journal Article Main Library - Special Collections HD9715.A1 CON (Browse shelf(Opens below)) Vol. 31, no. 4-9 (pages 423-439) SP18033 Not for loan For in house use

Previous attempts have been made to model cash flow forecast at the tender stage using net cash flow, value flow and cost flow approaches. Despite these efforts, significant variations between the actual and modelled forecasts were still observable. The main cause identified is the issue of risk inherent in construction. Using the cost flow approach, a model is developed to assess the impacts of risk occurring during the construction stage on the initial forecast cost flow. A questionnaire survey and case study approach were employed. As a first step, a questionnaire survey was administered to UK construction contractors to determine the significant risk factors impacting on their cost flow forecast. Using mean ranking analysis, the survey yielded 11 significant risk factors. The second stage of data collection involves the collection of forecast and actual cost flow data from case study projects to establish their variations at predetermined time periods. Using the significant risk factors identified in the first phase, relevant construction professionals who worked on the case study projects were requested to score the extent of risk occurrence that resulted in the observed variations. A combination of these two sets of data was used to model the impact of risk on cost flow forecast using an artificial neural network back propagation algorithm. The model enables a contractor to predict the likely changes to a cost flow profile due to risks occurring in the construction stage.

There are no comments on this title.

to post a comment.