Midlands State University Library
Image from Google Jackets

Time series regression on integrated continuous-time processes with heavy and light tails created by Vicky Fasen

By: Material type: TextTextSeries: Econometric theory ; Volume 29, number 1Cambridge: Cambridge University Press, 2013Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
Subject(s): LOC classification:
  • HB139.T52 ECO
Online resources: Abstract: The paper presents a cointegration model in continuous time, where the linear combinations of the integrated processes are modeled by a multivariate Ornstein–Uhlenbeck process. The integrated processes are defined as vector-valued Lévy processes with an additional noise term. Hence, if we observe the process at discrete time points, we obtain a multiple regression model. As an estimator for the regression parameter we use the least squares estimator. We show that it is a consistent estimator and derive its asymptotic behavior. The limit distribution is a ratio of functionals of Brownian motions and stable Lévy processes, whose characteristic triplets have an explicit analytic representation. In particular, we present the Wald and the t-ratio statistic and simulate asymptotic confidence intervals. For the proofs we derive some central limit theorems for multivariate Ornstein–Uhlenbeck processes.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

The paper presents a cointegration model in continuous time, where the linear combinations of the integrated processes are modeled by a multivariate Ornstein–Uhlenbeck process. The integrated processes are defined as vector-valued Lévy processes with an additional noise term. Hence, if we observe the process at discrete time points, we obtain a multiple regression model. As an estimator for the regression parameter we use the least squares estimator. We show that it is a consistent estimator and derive its asymptotic behavior. The limit distribution is a ratio of functionals of Brownian motions and stable Lévy processes, whose characteristic triplets have an explicit analytic representation. In particular, we present the Wald and the t-ratio statistic and simulate asymptotic confidence intervals. For the proofs we derive some central limit theorems for multivariate Ornstein–Uhlenbeck processes.

There are no comments on this title.

to post a comment.