Midlands State University Library
Image from Google Jackets

Simple, robust, and powerful tests of the breaking trend hypothesis by David I. Harvey, Stephen J. Leybourne and A. M. Robert Taylor

By: Contributor(s): Material type: TextTextSeries: Econometric Theory ; Volume 25, number 4Cambridge : Cambridge University Press, 2009Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
Subject(s): LOC classification:
  • HB139.T52 ECO
Online resources: Summary: In this paper we develop a simple procedure which delivers tests for the presence of a broken trend in a univariate time series which do not require knowledge of the form of serial correlation in the data and are robust as to whether the shocks are generated by an I(0) or an I(1) process. Two trend break models are considered: the first holds the level fixed while allowing the trend to break, while the latter allows for a simultaneous break in level and trend. For the known break date case our proposed tests are formed as a weighted average of the optimal tests appropriate for I(0) and I(1) shocks. The weighted statistics are shown to have standard normal limiting null distributions and to attain the Gaussian asymptotic local power envelope, in each case regardless of whether the shocks are I(0) or I(1). In the unknown break date case we adopt the method of Andrews (1993) and take a weighted average of the statistics formed as the supremum over all possible break dates, subject to a trimming parameter, in both the I(0) and I(1) environments. Monte Carlo evidence suggests that our tests are in most cases more powerful, often substantially so, than the robust broken trend tests of Sayginsoy and Vogelsang (2004). An empirical application highlights the practical usefulness of our proposed tests.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

In this paper we develop a simple procedure which delivers tests for the presence of a broken trend in a univariate time series which do not require knowledge of the form of serial correlation in the data and are robust as to whether the shocks are generated by an I(0) or an I(1) process. Two trend break models are considered: the first holds the level fixed while allowing the trend to break, while the latter allows for a simultaneous break in level and trend. For the known break date case our proposed tests are formed as a weighted average of the optimal tests appropriate for I(0) and I(1) shocks. The weighted statistics are shown to have standard normal limiting null distributions and to attain the Gaussian asymptotic local power envelope, in each case regardless of whether the shocks are I(0) or I(1). In the unknown break date case we adopt the method of Andrews (1993) and take a weighted average of the statistics formed as the supremum over all possible break dates, subject to a trimming parameter, in both the I(0) and I(1) environments. Monte Carlo evidence suggests that our tests are in most cases more powerful, often substantially so, than the robust broken trend tests of Sayginsoy and Vogelsang (2004). An empirical application highlights the practical usefulness of our proposed tests.

There are no comments on this title.

to post a comment.