Midlands State University Library
Image from Google Jackets

Inference on nonparametrically trending time series with fractional errors created by P. M. Robinson

By: Material type: TextTextSeries: Econometric theory ; Volume 25, number 6Cambridge: Cambridge University Press, 2009Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
Subject(s): LOC classification:
  • HB139.T52 ECO
Online resources: Abstract: The central limit theorem for nonparametric kernel estimates of a smooth trend, with linearly-generated errors, indicates asymptotic independence and homoscedasticity across fixed points, irrespective of whether disturbances have short memory, long memory, or anti persistence. However, the asymptotic variance depends on the kernel function in a way that varies across these three circumstances, and in the latter two involves a double integral that cannot necessarily be evaluated in closed form. For a particular class of kernels, we obtain analytic formulae. We discuss extensions to more general settings, including ones involving possible cross-sectional or spatial dependence.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

The central limit theorem for nonparametric kernel estimates of a smooth trend, with linearly-generated errors, indicates asymptotic independence and homoscedasticity across fixed points, irrespective of whether disturbances have short memory, long memory, or anti persistence. However, the asymptotic variance depends on the kernel function in a way that varies across these three circumstances, and in the latter two involves a double integral that cannot necessarily be evaluated in closed form. For a particular class of kernels, we obtain analytic formulae. We discuss extensions to more general settings, including ones involving possible cross-sectional or spatial dependence.

There are no comments on this title.

to post a comment.