Midlands State University Library
Image from Google Jackets

On the recoverability of forecasters' preferences created by Robert P. Lieil and Maxwell B. Stinchcombe

By: Contributor(s): Material type: TextTextSeries: Econometric Theory ; Volume 29, number 3Cambridge: Cambridge University Press, 2013Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISSN:
  • 02664666
Subject(s): LOC classification:
  • HB139.T52 ECO
Online resources: Abstract: We study the problem of identifying a forecaster’s loss function from observations on forecasts, realizations, and the forecaster’s information set. Essentially different loss functions can lead to the same forecasts in all situations, though within the class of all continuous loss functions, this is strongly nongeneric. With the small set of exceptional cases ruled out, generic nonparametric preference recovery is theoretically possible, but identification depends critically on the amount of variation in the conditional distributions of the process being forecast. There exist processes with sufficient variability to guarantee identification, and much of this variation is also necessary for a process to have universal identifying power. We also briefly address the case in which the econometrician does not fully observe the conditional distributions used by the forecaster, and in this context we provide a practically useful set identification result for loss functions used in forecasting binary variables.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

We study the problem of identifying a forecaster’s loss function from observations on forecasts, realizations, and the forecaster’s information set. Essentially different loss functions can lead to the same forecasts in all situations, though within the class of all continuous loss functions, this is strongly nongeneric. With the small set of exceptional cases ruled out, generic nonparametric preference recovery is theoretically possible, but identification depends critically on the amount of variation in the conditional distributions of the process being forecast. There exist processes with sufficient variability to guarantee identification, and much of this variation is also necessary for a process to have universal identifying power. We also briefly address the case in which the econometrician does not fully observe the conditional distributions used by the forecaster, and in this context we provide a practically useful set identification result for loss functions used in forecasting binary variables.

There are no comments on this title.

to post a comment.