Midlands State University Library
Image from Google Jackets

Testing homogeneity in panel data models with interactive fixed effects created by Liangjun Su and Qihui Chen

By: Contributor(s): Material type: TextTextSeries: Econometric Theory ; Volume 29, number 6Cambridge: Cambridge University Press, 2013Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISSN:
  • 0266466
Subject(s): LOC classification:
  • HB139.T52 ECO
Online resources: Abstract: This paper proposes a residual-based Lagrange Multiplier (LM) test for slope homogeneity in large-dimensional panel data models with interactive fixed effects. We first run the panel regression under the null to obtain the restricted residuals and then use them to construct our LM test statistic. We show that after being appropriately centered and scaled, our test statistic is asymptotically normally distributed under the null and a sequence of Pitman local alternatives. The asymptotic distributional theories are established under fairly general conditions that allow for both lagged dependent variables and conditional heteroskedasticity of unknown form by relying on the concept of conditional strong mixing. To improve the finite-sample performance of the test, we also propose a bootstrap procedure to obtain the bootstrap p-values and justify its validity. Monte Carlo simulations suggest that the test has correct size and satisfactory power. We apply our test to study the Organization for Economic Cooperation and Development economic growth model.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

This paper proposes a residual-based Lagrange Multiplier (LM) test for slope homogeneity in large-dimensional panel data models with interactive fixed effects. We first run the panel regression under the null to obtain the restricted residuals and then use them to construct our LM test statistic. We show that after being appropriately centered and scaled, our test statistic is asymptotically normally distributed under the null and a sequence of Pitman local alternatives. The asymptotic distributional theories are established under fairly general conditions that allow for both lagged dependent variables and conditional heteroskedasticity of unknown form by relying on the concept of conditional strong mixing. To improve the finite-sample performance of the test, we also propose a bootstrap procedure to obtain the bootstrap p-values and justify its validity. Monte Carlo simulations suggest that the test has correct size and satisfactory power. We apply our test to study the Organization for Economic Cooperation and Development economic growth model.

There are no comments on this title.

to post a comment.