A functional version of the arch model created by Siegfried Hörmann, Lajos Horváth and Ron Reeder
Material type:
- text
- unmediated
- volume
- 02664666
- HB139.T52 ECO
Item type | Current library | Call number | Vol info | Copy number | Status | Notes | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|---|
![]() |
Main Library - Special Collections | HB139.T52 ECO (Browse shelf(Opens below)) | Vol. 29, no.2 (pages 267-289) | SP17542 | Not for loan | For In House Use Only |
Browsing Main Library shelves, Shelving location: - Special Collections Close shelf browser (Hides shelf browser)
Improvements in data acquisition and processing techniques have led to an almost continuous flow of information for financial data. High-resolution tick data are available and can be quite conveniently described by a continuous-time process. It is therefore natural to ask for possible extensions of financial time series models to a functional setup. In this paper we propose a functional version of the popular autoregressive conditional heteroskedasticity model. We will establish conditions for the existence of a strictly stationary solution, derive weak dependence and moment conditions, show consistency of the estimators, and perform a small empirical study demonstrating how our model matches with real data.
There are no comments on this title.