Estimation of and inference about the expected shortfall for time series with infinite variance created by Oliver Linton and Zhijie Xiao
Material type:
- text
- unmediated
- volume
- HB139.T52 JOU
Item type | Current library | Call number | Vol info | Copy number | Status | Notes | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|---|
![]() |
Main Library - Special Collections | HB139.T52 ECO (Browse shelf(Opens below)) | Vol. 29, no.4 (pages 771-807) | SP17541 | Not for loan | For In House Use Only |
We study estimation and inference of the expected shortfall for time series with infinite variance. Both the smoothed and nonsmoothed estimators are investigated. The rate of convergence is determined by the tail thickness parameter, and the limiting distribution is in the stable class with parameters depending on the tail thickness parameter of the time series and on the dependence structure, which makes inference complicated. A subsampling procedure is proposed to carry out statistical inference. We also analyze a nonparametric estimator of the conditional expected shortfall. A Monte Carlo experiment is conducted to evaluate the finite sample performance of the proposed inference procedure, and an empirical application to emerging market exchange rates (from October 1997 to October 2008) is conducted to highlight the proposed study.
There are no comments on this title.