Midlands State University Library
Image from Google Jackets

Estimation adjusted var created by Christian Gourieroux and Jean-Michel Zakoïan

By: Contributor(s): Material type: TextTextSeries: Econometric Theory ; Volume 29, number 4Cambridge: Cambridge University Press: 2013Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISSN:
  • 02664666
LOC classification:
  • HB139.T52 ECO
Online resources: Abstract: Standard risk measures, such as the value-at-risk (VaR), or the expected shortfall, have to be estimated, and their estimated counterparts are subject to estimation uncertainty. Replacing, in the theoretical formulas, the true parameter value by an estimator based on n observations of the profit and loss variable induces an asymptotic bias of order 1/n in the coverage probabilities. This paper shows how to correct for this bias by introducing a new estimator of the VaR, called estimation-adjusted VaR (EVaR). This adjustment allows for a joint treatment of theoretical and estimation risks, taking into account their possible dependence. The estimator is derived for a general parametric dynamic model and is particularized to stochastic drift and volatility models. The finite sample properties of the EVaR estimator are studied by simulation and an empirical study of the S&P index is proposed.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Vol info Copy number Status Notes Date due Barcode
Journal Article Journal Article Main Library - Special Collections HB139.T52 ECO (Browse shelf(Opens below)) Vol. 29, no.4 (pages 735-770) SP17541 Not for loan For In House Use Only

Standard risk measures, such as the value-at-risk (VaR), or the expected shortfall, have to be estimated, and their estimated counterparts are subject to estimation uncertainty. Replacing, in the theoretical formulas, the true parameter value by an estimator based on n observations of the profit and loss variable induces an asymptotic bias of order 1/n in the coverage probabilities. This paper shows how to correct for this bias by introducing a new estimator of the VaR, called estimation-adjusted VaR (EVaR). This adjustment allows for a joint treatment of theoretical and estimation risks, taking into account their possible dependence. The estimator is derived for a general parametric dynamic model and is particularized to stochastic drift and volatility models. The finite sample properties of the EVaR estimator are studied by simulation and an empirical study of the S&P index is proposed.

There are no comments on this title.

to post a comment.