Nonparametric inference for conditional quantiles of time series created by Ke-Li Xu
Material type:
- text
- unmediated
- volume
- 02664666
- HB139.T52 ECO
Item type | Current library | Call number | Vol info | Copy number | Status | Notes | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|---|
![]() |
Main Library - Special Collections | HB139.T52 ECO (Browse shelf(Opens below)) | Vol. 29, no.4 (pages 673-698) | SP17541 | Not for loan | For In House Use Only |
This paper considers model-free hypothesis testing and confidence interval construction for conditional quantiles of time series. A new method, which is based on inversion of the smoothed empirical likelihood of the conditional distribution function around the local polynomial estimator, is proposed. The associated inferential procedures do not require variance estimation, and the confidence intervals are automatically shaped by data. We also construct the bias-corrected empirical likelihood, which does not require undersmoothing. Limit theories are developed for mixing time series. Simulations show that the proposed methods work well in finite samples and outperform the normal confidence interval. An empirical application to inference of the conditional value-at-risk of stock returns is also provided.
There are no comments on this title.