Midlands State University Library
Image from Google Jackets

Multiple comparisons problem: recent advances applied to energy and emissions created by M. Cummins

By: Material type: TextTextSeries: Applied economics letters ; Volume 20, number 9New York: Taylor and Francis, 2013Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISSN:
  • 13504851
Subject(s): LOC classification:
  • HB1.A666 APP
Online resources: Abstract: Within the field of empirical finance, the econometric analysis of markets commonly suffers from the well-established problem of data-snooping bias, whereby there is a likelihood that statistically significant results may be identified by pure random chance alone. This is the multiple comparisons problem resulting from Multiple Hypothesis Testing (MHT). Recent advances in MHT techniques to control the multiple comparisons problem are uniquely showcased within a VAR and Granger causality testing of energy and emissions market interactions. Four generalized p-value-based MHT techniques show no evidence of interactions between European Union Allowance (EUA) prices and a range of energy prices – spanning key oil, gas, coal and electricity markets – over the first half or so (2008–2010) of Phase II of the EU Emissions Trading Scheme. The generalized familywise error rate procedures show evidence of regional and cross-regional interactions within European electricity markets. However, in contrast, the more conservative false discovery proportion procedures identify much fewer statistically significant relationship and, indeed, show little evidence of such cross-regional electricity market interactions.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

Within the field of empirical finance, the econometric analysis of markets commonly suffers from the well-established problem of data-snooping bias, whereby there is a likelihood that statistically significant results may be identified by pure random chance alone. This is the multiple comparisons problem resulting from Multiple Hypothesis Testing (MHT). Recent advances in MHT techniques to control the multiple comparisons problem are uniquely showcased within a VAR and Granger causality testing of energy and emissions market interactions. Four generalized p-value-based MHT techniques show no evidence of interactions between European Union Allowance (EUA) prices and a range of energy prices – spanning key oil, gas, coal and electricity markets – over the first half or so (2008–2010) of Phase II of the EU Emissions Trading Scheme. The generalized familywise error rate procedures show evidence of regional and cross-regional interactions within European electricity markets. However, in contrast, the more conservative false discovery proportion procedures identify much fewer statistically significant relationship and, indeed, show little evidence of such cross-regional electricity market interactions.

There are no comments on this title.

to post a comment.