Midlands State University Library
Image from Google Jackets

Assessing natural and anthropogenic variability in wetland structure for two hydrogeomorphic riverine wetland subclasses

By: Contributor(s): Material type: TextTextSeries: Environmental Management ; Volume , number ,New York Springer 2013Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
Subject(s): Online resources: Summary: The hydrogeomorphic approach (HGM) to wetland classification and functional assessment has been applied regionally throughout the United States, but the ability of HGM functional assessment models to reflect wetland condition has limited verification. Our objective was to determine how variability derived from anthropogenic effects and natural variability impacted site assessment variables within regional wetland subclasses in central Oklahoma. We collected data for nine potential assessment variables including vegetation physiognomy (e.g., tree basal area, herbaceous cover, canopy cover, etc.) and soil organic matter at wetlands of two HGM riverine subclasses (oxbow and riparian) in May and June, 2010. Using Akaike Information Criteria, we identified limited relationships between landscape disturbance metrics and assessment variables within subclasses. The high degree of natural variability from climatic and hydrologic factors within both subclasses may be masking the impact of landscape disturbance on the other measured assessment variables. Precipitation had significant effects on assessment variables within each of the subclasses. To reduce natural climatic variability, the reference domain may need to be further subdivided. The approach used in this study provides fairly rapid and quantitative methods for evaluating the effectiveness of using HGM assessment variables in assessing wetland condition regionally.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

The hydrogeomorphic approach (HGM) to wetland classification and functional assessment has been applied regionally throughout the United States, but the ability of HGM functional assessment models to reflect wetland condition has limited verification. Our objective was to determine how variability derived from anthropogenic effects and natural variability impacted site assessment variables within regional wetland subclasses in central Oklahoma. We collected data for nine potential assessment variables including vegetation physiognomy (e.g., tree basal area, herbaceous cover, canopy cover, etc.) and soil organic matter at wetlands of two HGM riverine subclasses (oxbow and riparian) in May and June, 2010. Using Akaike Information Criteria, we identified limited relationships between landscape disturbance metrics and assessment variables within subclasses. The high degree of natural variability from climatic and hydrologic factors within both subclasses may be masking the impact of landscape disturbance on the other measured assessment variables. Precipitation had significant effects on assessment variables within each of the subclasses. To reduce natural climatic variability, the reference domain may need to be further subdivided. The approach used in this study provides fairly rapid and quantitative methods for evaluating the effectiveness of using HGM assessment variables in assessing wetland condition regionally.

There are no comments on this title.

to post a comment.