Midlands State University Library
Image from Google Jackets

Chemical stabilization of metals in the environment a feasible alternative for remediation of mine soils

By: Contributor(s): Material type: TextTextSeries: Environmental earth sciences ; Volume , number ,Verlag Springer 2013Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
Subject(s): Online resources: Summary: Initial risk assessment characterization carried out in a tailing pond, called “El Lirio”, came from metal mining showed that these soils have low fertility; low amounts of nitrogen, organic carbon, phosphorous, and carbonates; and high concentrations of total metals (10,719 mg Zn kg−1, 2,821 mg Pb kg−1, and 30 mg Cd kg−1), diethylenetriaminepentaacetic acid (DTPA)-extractable metals, and water-soluble metals, which suggest an urgent need for remediation. Different amendments have been selected, including three anthropogenic wastes: pig manure, sewage sludge, and lime; all were added to the constructed plots in the mine pond. The objectives were to: (1) reduce acid mine drainage, metal mobilization, and toxicity and (2) provide nutrients which enable plant establishment. Results showed an increase in pH, electrical conductivity, total nitrogen, organic carbon, and equivalent calcium carbonate contents. Although water- and DTPA-extractable Zn, Pb, and Cd were reduced, there was an increment in DTPA- and water-extractable Cu due to the addition of organic matter. The amendments also enhanced the establishment of plants. This study constitutes the first stage of a successful remediation programme that can be applied in similar mining areas. The chemical stabilization of metals is a cost-effective alternative for remediation of mine areas in SE Spain.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

Initial risk assessment characterization carried out in a tailing pond, called “El Lirio”, came from metal mining showed that these soils have low fertility; low amounts of nitrogen, organic carbon, phosphorous, and carbonates; and high concentrations of total metals (10,719 mg Zn kg−1, 2,821 mg Pb kg−1, and 30 mg Cd kg−1), diethylenetriaminepentaacetic acid (DTPA)-extractable metals, and water-soluble metals, which suggest an urgent need for remediation. Different amendments have been selected, including three anthropogenic wastes: pig manure, sewage sludge, and lime; all were added to the constructed plots in the mine pond. The objectives were to: (1) reduce acid mine drainage, metal mobilization, and toxicity and (2) provide nutrients which enable plant establishment. Results showed an increase in pH, electrical conductivity, total nitrogen, organic carbon, and equivalent calcium carbonate contents. Although water- and DTPA-extractable Zn, Pb, and Cd were reduced, there was an increment in DTPA- and water-extractable Cu due to the addition of organic matter. The amendments also enhanced the establishment of plants. This study constitutes the first stage of a successful remediation programme that can be applied in similar mining areas. The chemical stabilization of metals is a cost-effective alternative for remediation of mine areas in SE Spain.

There are no comments on this title.

to post a comment.