Midlands State University Library
Image from Google Jackets

Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea

By: Contributor(s): Material type: TextTextSeries: Environmental earth sciences ; Volume , number ,Verlag Springer 2013Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
Subject(s): Online resources: Summary: Every year, the Republic of Korea experiences numerous landslides, resulting in property damage and casualties. This study compared the abilities of frequency ratio (FR), analytic hierarchy process (AHP), logistic regression (LR), and artificial neural network (ANN) models to produce landslide susceptibility index (LSI) maps for use in predicting possible landslide occurrence and limiting damage. The areas under the relative operating characteristic (ROC) curves for the FR, AHP, LR, and ANN LSI maps were 0.794, 0.789, 0.794, and 0.806, respectively. Thus, the LSI maps developed by all the models had similar accuracy. A cross-tabulation analysis of landslide occurrence against non-occurrence areas showed generally similar overall accuracies of 65.27, 64.35, 65.51, and 68.47 % for the FR, AHP, LR, and ANN models, respectively. A correlation analysis between the models demonstrated that the LR and ANN models had the highest correlation (0.829), whereas the FR and AHP models had the lowest correlation (0.619).
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

Every year, the Republic of Korea experiences numerous landslides, resulting in property damage and casualties. This study compared the abilities of frequency ratio (FR), analytic hierarchy process (AHP), logistic regression (LR), and artificial neural network (ANN) models to produce landslide susceptibility index (LSI) maps for use in predicting possible landslide occurrence and limiting damage. The areas under the relative operating characteristic (ROC) curves for the FR, AHP, LR, and ANN LSI maps were 0.794, 0.789, 0.794, and 0.806, respectively. Thus, the LSI maps developed by all the models had similar accuracy. A cross-tabulation analysis of landslide occurrence against non-occurrence areas showed generally similar overall accuracies of 65.27, 64.35, 65.51, and 68.47 % for the FR, AHP, LR, and ANN models, respectively. A correlation analysis between the models demonstrated that the LR and ANN models had the highest correlation (0.829), whereas the FR and AHP models had the lowest correlation (0.619).

There are no comments on this title.

to post a comment.