Midlands State University Library
Image from Google Jackets

Anthropogenic impacts on reduced inorganic sulfur and heavy metals in coastal surface sediments, north Yellow Sea

By: Contributor(s): Material type: TextTextSeries: Environmental earth sciences ; Volume , number ,Verlag Springer 2013Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
Subject(s): Online resources: Summary: This study investigated the organic carbon, reduced inorganic sulfur, and heavy metal distribution in superficial sediments at an estuary, a wastewater discharge area, and a mariculture area, as compared with an unpolluted distal site, in the north Yellow Sea, China. Sediment grain size, acid volatile sulfur (AVS), chromium (II)-reducible sulfur, elemental sulfur, total sulfur, total organic carbon (TOC), total nitrogen and trace metal content were determined for each site. These results indicate that pollution leads to increased TOC at all affected sites, which in turn leads to elevated AVS. The resultant change in diagenetic environment leads to changes in the mineralogical fate of Mn. Pb, Zn, Cu, and Cd: all are present at elevated concentrations, and with more metal in the non-residual fractions. Cd shows by far the most elevated concentrations and most significant increase in non-residual fractions and consequently poses the most significant pollution risk.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

This study investigated the organic carbon, reduced inorganic sulfur, and heavy metal distribution in superficial sediments at an estuary, a wastewater discharge area, and a mariculture area, as compared with an unpolluted distal site, in the north Yellow Sea, China. Sediment grain size, acid volatile sulfur (AVS), chromium (II)-reducible sulfur, elemental sulfur, total sulfur, total organic carbon (TOC), total nitrogen and trace metal content were determined for each site. These results indicate that pollution leads to increased TOC at all affected sites, which in turn leads to elevated AVS. The resultant change in diagenetic environment leads to changes in the mineralogical fate of Mn. Pb, Zn, Cu, and Cd: all are present at elevated concentrations, and with more metal in the non-residual fractions. Cd shows by far the most elevated concentrations and most significant increase in non-residual fractions and consequently poses the most significant pollution risk.

There are no comments on this title.

to post a comment.