Estimation of groundwater recharge in arid, data scarce regions an approach as applied in the El Hawashyia basin and Ghazala sub-basin (Gulf of Suez, Egypt)
Material type:
- text
- unmediated
- volume
Item type | Current library | Call number | Vol info | Status | Notes | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|
![]() |
Main Library - Special Collections | GE105 ENV (Browse shelf(Opens below)) | Vol.69 , No.1 (May 2013) | Not for loan | For In House Use Only |
Browsing Main Library shelves, Shelving location: - Special Collections Close shelf browser (Hides shelf browser)
In this study, an approach for runoff and recharge estimations that can be applied in arid regions which suffer from lack of data is presented. Estimating groundwater recharge in arid regions is an extremely important but difficult task, the main reason is the scarcity of data in arid regions. This is true for the Eastern Egyptian Desert where groundwater is used for irrigation purposes in agricultural reclamation along the Red Sea coast line. As a result of the scarcity of hydrologic information, the relation between rainfall and runoff was calculated depending on the paleo-flood hydrology information. Two models were used to calculate the rainfall–runoff relationships for El Hawashyia basin and Ghazala sub-basin. Two computer programs known as Gerinne (meaning channel in German) and SMADA6 (Stormwater Management and Design Aid, version 6) were conjunctively used for this purpose. As a result of the model applied to El Hawashyia basin, a rainfall event of a total of 18.3 mm with duration 3 h at the station of Hurghada, which has an exceedance probability of 5–10 %, produces a discharge volume of 10.2 × 106 m3 at the delta, outlet of the basin, as 4.7 mm of the rainfall infiltrates (recharge). For the Ghazala sub-basin, the model yields a runoff volume of 3.16 × 106 m3 transferred from a total rainfall of 25 mm over a period of 3 h, as 3.2 mm of it was lost as infiltration.
There are no comments on this title.