Midlands State University Library
Image from Google Jackets

Groundwater nitrate pollution in the recharge zone of a regional Quaternary flow system (Wielkopolska region, Poland)

By: Material type: TextTextSeries: Environmental earth sciences ; Volume , number ,Verlag Springer 2013Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
Subject(s): Online resources: Summary: The present study examines the behaviour of nitrate in the recharge zone of a regional Quaternary flow system. The presence of contaminated groundwater with high nitrate content in the shallow part of the flow system was documented. Tritium analyses confirmed that these contaminants can migrate downward. A high downward gradient exists in the study area, extending into the regions of groundwater extraction. In the unconfined part of the flow system, which is the most vulnerable to pollution, a high concentration of nitrate was found to occur at great depth. However, denitrification processes limit nitrate migration. As a result, in the deeper parts of the flow system in regions under confined conditions, an absence of nitrate was observed, and a higher sulphate concentration and total hardness were evident. The denitrification was also confirmed by the existence of a high gaseous N2 concentration. It was documented that denitrification occurs in both the confined and unconfined parts of the flow system, but the potential for denitrification is higher in the confined parts (leading to the disappearance of nitrate in deep aquifers). Autotrophic denitrification supported by sulphide compounds was indicated as the dominant denitrification process.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

The present study examines the behaviour of nitrate in the recharge zone of a regional Quaternary flow system. The presence of contaminated groundwater with high nitrate content in the shallow part of the flow system was documented. Tritium analyses confirmed that these contaminants can migrate downward. A high downward gradient exists in the study area, extending into the regions of groundwater extraction. In the unconfined part of the flow system, which is the most vulnerable to pollution, a high concentration of nitrate was found to occur at great depth. However, denitrification processes limit nitrate migration. As a result, in the deeper parts of the flow system in regions under confined conditions, an absence of nitrate was observed, and a higher sulphate concentration and total hardness were evident. The denitrification was also confirmed by the existence of a high gaseous N2 concentration. It was documented that denitrification occurs in both the confined and unconfined parts of the flow system, but the potential for denitrification is higher in the confined parts (leading to the disappearance of nitrate in deep aquifers). Autotrophic denitrification supported by sulphide compounds was indicated as the dominant denitrification process.

There are no comments on this title.

to post a comment.