Midlands State University Library
Image from Google Jackets

Development and application of a soil organic matter-based soil quality index in mineralized terrane of the Western US

By: Contributor(s): Material type: TextTextSeries: Environmental earth sciences ; Volume , number ,Verlag Springer 2013Content type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
Subject(s): Online resources: Summary: Soil quality indices provide a means of distilling large amounts of data into a single metric that evaluates the soil’s ability to carry out key ecosystem functions. Primarily developed in agroecosytems, then forested ecosystems, an index using the relation between soil organic matter and other key soil properties in more semi-arid systems of the Western US impacted by different geologic mineralization was developed. Three different sites in two different mineralization types, acid sulfate and Cu/Mo porphyry in California and Nevada, were studied. Soil samples were collected from undisturbed soils in both mineralized and nearby unmineralized terrane as well as waste rock and tailings. Eight different microbial parameters (carbon substrate utilization, microbial biomass-C, mineralized-C, mineralized-N and enzyme activities of acid phosphatase, alkaline phosphatase, arylsulfatase, and fluorescein diacetate) along with a number of physicochemical parameters were measured. Multiple linear regression models between these parameters and both total organic carbon and total nitrogen were developed, using the ratio of predicted to measured values as the soil quality index. In most instances, pooling unmineralized and mineralized soil data within a given study site resulted in lower model correlations. Enzyme activity was a consistent explanatory variable in the models across the study sites. Though similar indicators were significant in models across different mineralization types, pooling data across sites inhibited model differentiation of undisturbed and disturbed sites. This procedure could be used to monitor recovery of disturbed systems in mineralized terrane and help link scientific and management disciplines.
Reviews from LibraryThing.com:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Vol info Status Notes Date due Barcode
Journal Article Journal Article Main Library - Special Collections GE105 ENV (Browse shelf(Opens below)) Vol.68 , No.7 (Apr 2013) Not for loan For In House Use Only

Soil quality indices provide a means of distilling large amounts of data into a single metric that evaluates the soil’s ability to carry out key ecosystem functions. Primarily developed in agroecosytems, then forested ecosystems, an index using the relation between soil organic matter and other key soil properties in more semi-arid systems of the Western US impacted by different geologic mineralization was developed. Three different sites in two different mineralization types, acid sulfate and Cu/Mo porphyry in California and Nevada, were studied. Soil samples were collected from undisturbed soils in both mineralized and nearby unmineralized terrane as well as waste rock and tailings. Eight different microbial parameters (carbon substrate utilization, microbial biomass-C, mineralized-C, mineralized-N and enzyme activities of acid phosphatase, alkaline phosphatase, arylsulfatase, and fluorescein diacetate) along with a number of physicochemical parameters were measured. Multiple linear regression models between these parameters and both total organic carbon and total nitrogen were developed, using the ratio of predicted to measured values as the soil quality index. In most instances, pooling unmineralized and mineralized soil data within a given study site resulted in lower model correlations. Enzyme activity was a consistent explanatory variable in the models across the study sites. Though similar indicators were significant in models across different mineralization types, pooling data across sites inhibited model differentiation of undisturbed and disturbed sites. This procedure could be used to monitor recovery of disturbed systems in mineralized terrane and help link scientific and management disciplines.

There are no comments on this title.

to post a comment.